分泌性中耳炎吃什么药| 舞是什么结构| 黄体破裂是什么意思| 蝉鸣是什么季节| 做胃镜有什么好处| 什么药补气血效果最好| 第57个民族是什么民族| 什么的花纹| 七宗罪分别是什么| 瞎子吃核桃砸了手是什么生肖| 梦见着火了是什么征兆| 清明节什么时候| 银925是什么意思| 古力娜扎全名叫什么| 口水多是什么原因| 面瘫是什么原因引起的| 保教费是什么意思| 精满自溢是什么意思| 中邪是什么意思| 社保卡是什么样的图片| 甲状腺结节有什么症状表现| gm是什么单位| 右肾小结石是什么意思| air是什么牌子| 原位癌是什么意思| 杜甫的号是什么| 女生月经迟迟不来是什么原因| 爱新觉罗是什么意思| 冒菜和麻辣烫有什么区别| 书店里买不到什么书| 汤姆是什么品种的猫| 农历六月初十是什么日子| 什么的水流| journey是什么意思| 今日冲什么生肖| 交泰殿是干什么的| 炼乳是什么做的| 什么叫外阴白斑| 辛辣指的是什么| 什么叫精神出轨| caring什么意思| 纤支镜主要检查什么| 是什么拼音| 质子是什么意思| 和什么细什么的成语| 吃马齿苋有什么好处| 什么东西清肺最好| 感冒了吃什么食物最好| 鸟字旁的字大多和什么有关| 小妾是什么意思| 客家人为什么叫客家人| 医院查怀孕做什么检查| 什么是皮包公司| 什么是生酮饮食| 细菌感染吃什么抗生素| 什么什么什么人| 什么相处| 甲醇对人体有什么伤害| 腊肉炖什么好吃| 空调为什么要加氟| nag是什么意思| 娃娃鱼用什么呼吸| 急性荨麻疹吃什么药| 1964属什么生肖| 喝什么能减肥| 核磁共振跟ct有什么区别| 木薯粉在超市里叫什么| 蜘蛛吃什么食物| 抗日战争什么时候开始的| 肝不好有什么症状表现| 成人大便绿色是什么原因| 油性头发用什么洗发水| 坐月子哭了会有什么后遗症| 手足口病忌口什么食物| 命名是什么意思| 什么是性质| 厚颜无耻是什么生肖| 飞黄腾达是什么意思| 什么水果含维生素b| 什么铜钱最值钱| 山药长什么样| 做梦梦到狗是什么征兆| 尔字五行属什么| conch是什么牌子| 蛇盘疮是什么症状| 神气活现是什么意思| 点到为止是什么意思| 食欲不振是什么意思| 心肾不交失眠吃什么中成药| 6969是什么意思| 感冒发烧吃点什么食物比较好| 五心烦热吃什么中成药| 两个立念什么| 做穿刺是什么意思| 鼻烟壶是干什么用的| 处暑吃什么| 贪心不足蛇吞象什么意思| 天麻是什么东西| 儿童去火吃什么药| 浅表性胃炎吃什么中药| 2018年属什么| 排卵日是什么意思| 整体认读音节有什么| 姐姐的孩子叫我什么| 肺积水是什么原因引起的| 什么是癔症| 烧心是什么症状| 什么茶叶降血压最好| 派出所是干什么的| 史密斯夫妇什么意思| 深水炸弹是什么| 人体缺钾会有什么症状| 虎配什么生肖最好| 血压偏高吃什么药| 一岁宝宝能吃什么水果| 人工念什么字| 痰培养是检查什么的| 怀孕孕酮低有什么影响| 陶渊明是什么派诗人| 为什么手脚老是出汗| 血压低吃什么| 褥疮用什么药最好| 为什么冰箱冷藏室会结冰| 人中长痘是什么原因| 阴道炎用什么洗液| 地中海贫血是什么病| 生理期不能吃什么| 大拇指旁边是什么指| 二网是什么意思| 腰疼做什么检查| 女左上眼皮跳是什么预兆| tg是什么意思| 20是什么意思| 外阴白斑是什么症状| 阴茎长水泡是什么原因| 庞统为什么要献连环计| 邋遢什么意思| 人肉是什么味道| 补充电解质是什么意思| 什么是入珠| 做眉毛有什么危害| 白俄罗斯和俄罗斯有什么区别| 意淫什么意思| 榴莲为什么会苦| 颈椎病挂号挂什么科| 肺气泡吃什么药| 血压高喝什么茶| 女性尿路感染是什么原因造成的| 肛门瘙痒挂什么科| 胆酷醇高有什么危害| 深圳市市长是什么级别| 什么药治牙疼最快| pbc是什么意思| 荔枝肉是什么菜系| 一月10号是什么星座| 亮油什么时候涂| 刘三姐是什么生肖| 7月10日是什么星座| 公立医院和私立医院有什么区别| 生小孩有什么补贴政策| 倾国倾城是什么生肖| 不长头发是什么原因| 为什么会早产| osd是什么意思| 令人唏嘘是什么意思| 雄五行属什么| 痛风在医院挂什么科| 瓠子和什么相克| 艾叶泡脚有什么好处| 爱放屁是什么原因引起的| 呱唧呱唧是什么意思| 蜱虫最怕什么药| 梦见黑蛇是什么意思| 咕咚是什么| 副县长是什么级别干部| 7月16日什么星座| 夏季喝什么茶好| 什么蔬菜不能放冰箱| 水淀粉是什么东西| 肾结石是什么原因导致的| 躁动是什么意思| 桑树叶有什么功效| hpv16是什么| 紫水晶属于五行属什么| 雷贝拉唑钠肠溶片什么时候吃| 19朵玫瑰代表什么意思| josiny是什么牌子| 健忘是什么意思| 生化八项是检查什么| 胃不好吃什么蔬菜| 绿豆长什么样| 肩周炎是什么原因引起的| 胃胀想吐是什么原因| 血管堵塞用什么药| 腋下发黑是什么原因| 外感风寒是什么意思| 什么是甲亢| 玻璃的原材料是什么| 血小板减少有什么症状| 长脚气是什么原因引起的| 凝血功能差有什么危害| 丙肝病毒抗体阴性是什么意思| eagle是什么意思| 富贵包是什么| 辟谷有什么好处| 肛周瘙痒是什么原因| ast是什么意思| 羊下面是什么生肖| gif是什么意思| 儿童嗓子疼吃什么药好| 十滴水泡脚有什么好处| 日本人什么时候投降的| 耳朵为什么老是痒| 痛什么什么痛| eb病毒iga抗体阳性是什么意思| 藿香正气水有什么作用| 酊是什么意思| 补白蛋白吃什么食物最快最好| 做什么检查需要空腹| 260是什么意思| 结膜囊在眼睛什么位置| 斯字五行属什么| 白马王子是什么意思| 心口下面疼是什么原因| 多动症看什么科室| 家属是什么意思| 7月13日是什么星座| 真菌怕什么消毒液| 阴道干涩吃什么药| 菊花泡水喝有什么功效| 飞吻是什么意思| 咳嗽吃什么好得快| 什么食物最养胃| 重心是什么| 多囊为什么要跳绳而不是跑步| 身上长很多痣是什么原因| 血燥吃什么好| 鱼腥草有什么用处| 猫传腹是什么病| 球虫病有什么症状| cbg是什么意思| 维生素b6治什么病| 梦到孩子被蛇咬是什么意思| 小孩口臭吃什么药效果最好| 阴虱病是什么原因引起的| 什么是靶向药| 什么坚果适合减肥吃| 血糖高一日三餐吃什么东西最适合| 睾丸扭转有什么症状| 女人为什么比男人长寿| 加湿器用什么水| 查微量元素挂什么科| 怀孕梦到老公出轨预示什么| 远房亲戚是什么意思| 手突然抖动是什么原因| 熟褐色是什么颜色| p站是什么| 梦见自己头发白了是什么意思| 晚上吃什么水果减肥效果最好| 天是什么生肖| 什么石头最值钱| b超fl是什么意思| 发烧喝什么汤| 缺钙有什么症状| 百度Jump to content

From Wikipedia, the free encyclopedia
(Redirected from Multivariate calculus)
百度 3未来编制或将省内统筹去年,国务院办公厅印发《关于推广支持创新相关改革举措的通知》,推广13项支持创新相关改革举措。

Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one.[1]

Multivariable calculus may be thought of as an elementary part of calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus.

Introduction

[edit]

In single-variable calculus, operations like differentiation and integration are made to functions of a single variable. In multivariate calculus, it is required to generalize these to multiple variables, and the domain is therefore multi-dimensional. Care is therefore required in these generalizations, because of two key differences between 1D and higher dimensional spaces:

  1. There are infinite ways to approach a single point in higher dimensions, as opposed to two (from the positive and negative direction) in 1D;
  2. There are multiple extended objects associated with the dimension; for example, for a 1D function, it must be represented as a curve on the 2D Cartesian plane, but a function with two variables is a surface in 3D, while curves can also live in 3D space.

The consequence of the first difference is the difference in the definition of the limits and continuity. Directional limits and derivatives define the limit and differential along a 1D parametrized curve, reducing the problem to the 1D case. Further higher-dimensional objects can be constructed from these operators.

The consequence of the second difference is the existence of multiple types of integration, including line integrals, surface integrals and volume integrals. Due to the non-uniqueness of these integrals, an antiderivative or indefinite integral cannot be properly defined.

Limits

[edit]

A study of limits and continuity in multivariable calculus yields many counterintuitive results not demonstrated by single-variable functions.

A limit along a path may be defined by considering a parametrised path in n-dimensional Euclidean space. Any function can then be projected on the path as a 1D function . The limit of to the point along the path can hence be defined as

Note that the value of this limit can be dependent on the form of , i.e. the path chosen, not just the point which the limit approaches.[1]:?19–22? For example, consider the function

If the point is approached through the line , or in parametric form:

Plot of the function f(x, y) = (x2y)/(x4 + y2)

Then the limit along the path will be:

On the other hand, if the path (or parametrically, ) is chosen, then the limit becomes:

Since taking different paths towards the same point yields different values, a general limit at the point cannot be defined for the function.

A general limit can be defined if the limits to a point along all possible paths converge to the same value, i.e. we say for a function that the limit of to some point is L, if and only if

for all continuous functions such that .

Continuity

[edit]

From the concept of limit along a path, we can then derive the definition for multivariate continuity in the same manner, that is: we say for a function that is continuous at the point , if and only if

for all continuous functions such that .

As with limits, being continuous along one path does not imply multivariate continuity.

Continuity in each argument not being sufficient for multivariate continuity can also be seen from the following example.[1]:?17–19? For example, for a real-valued function with two real-valued parameters, , continuity of in for fixed and continuity of in for fixed does not imply continuity of .

Consider

It is easy to verify that this function is zero by definition on the boundary and outside of the quadrangle . Furthermore, the functions defined for constant and and by

and

are continuous. Specifically,

for all x and y. Therefore, and moreover, along the coordinate axes, and . Therefore the function is continuous along both individual arguments.

However, consider the parametric path . The parametric function becomes

Therefore,

It is hence clear that the function is not multivariate continuous, despite being continuous in both coordinates.

Theorems regarding multivariate limits and continuity

[edit]
  • All properties of linearity and superposition from single-variable calculus carry over to multivariate calculus.
  • Composition: If and are both multivariate continuous functions at the points and respectively, then is also a multivariate continuous function at the point .
  • Multiplication: If and are both continuous functions at the point , then is continuous at , and is also continuous at provided that .
  • If is a continuous function at point , then is also continuous at the same point.
  • If is Lipschitz continuous (with the appropriate normed spaces as needed) in the neighbourhood of the point , then is multivariate continuous at .
Proof

From the Lipschitz continuity condition for we have

where is the Lipschitz constant. Note also that, as is continuous at , for every there exists a such that .

Hence, for every , choose ; there exists an such that for all satisfying , , and . Hence converges to regardless of the precise form of .

Differentiation

[edit]

Directional derivative

[edit]

The derivative of a single-variable function is defined as

Using the extension of limits discussed above, one can then extend the definition of the derivative to a scalar-valued function along some path :

Unlike limits, for which the value depends on the exact form of the path , it can be shown that the derivative along the path depends only on the tangent vector of the path at , i.e. , provided that is Lipschitz continuous at , and that the limit exits for at least one such path.

Proof

For continuous up to the first derivative (this statement is well defined as is a function of one variable), we can write the Taylor expansion of around using Taylor's theorem to construct the remainder:

where .

Substituting this into 10,

where .

Lipschitz continuity gives us for some finite , . It follows that .

Note also that given the continuity of , as .

Substituting these two conditions into 12,

whose limit depends only on as the dominant term.

It is therefore possible to generate the definition of the directional derivative as follows: The directional derivative of a scalar-valued function along the unit vector at some point is

or, when expressed in terms of ordinary differentiation,

which is a well defined expression because is a scalar function with one variable in .

It is not possible to define a unique scalar derivative without a direction; it is clear for example that . It is also possible for directional derivatives to exist for some directions but not for others.

Partial derivative

[edit]

The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant.[1]:?26ff?

A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.

Partial derivatives may be combined in interesting ways to create more complicated expressions of the derivative. In vector calculus, the del operator () is used to define the concepts of gradient, divergence, and curl in terms of partial derivatives. A matrix of partial derivatives, the Jacobian matrix, may be used to represent the derivative of a function between two spaces of arbitrary dimension. The derivative can thus be understood as a linear transformation which directly varies from point to point in the domain of the function.

Differential equations containing partial derivatives are called partial differential equations or PDEs. These equations are generally more difficult to solve than ordinary differential equations, which contain derivatives with respect to only one variable.[1]:?654ff?

Multiple integration

[edit]

The multiple integral extends the concept of the integral to functions of any number of variables. Double and triple integrals may be used to calculate areas and volumes of regions in the plane and in space. Fubini's theorem guarantees that a multiple integral may be evaluated as a repeated integral or iterated integral as long as the integrand is continuous throughout the domain of integration.[1]:?367ff?

The surface integral and the line integral are used to integrate over curved manifolds such as surfaces and curves.

Fundamental theorem of calculus in multiple dimensions

[edit]

In single-variable calculus, the fundamental theorem of calculus establishes a link between the derivative and the integral. The link between the derivative and the integral in multivariable calculus is embodied by the integral theorems of vector calculus:[1]:?543ff?

In a more advanced study of multivariable calculus, it is seen that these four theorems are specific incarnations of a more general theorem, the generalized Stokes' theorem, which applies to the integration of differential forms over manifolds.[2]

Applications and uses

[edit]

Techniques of multivariable calculus are used to study many objects of interest in the material world. In particular,

Type of functions Applicable techniques
Curves
for
Lengths of curves, line integrals, and curvature.
Surfaces
for
Areas of surfaces, surface integrals, flux through surfaces, and curvature.
Scalar fields Maxima and minima, Lagrange multipliers, directional derivatives, level sets.
Vector fields Any of the operations of vector calculus including gradient, divergence, and curl.

Multivariable calculus can be applied to analyze deterministic systems that have multiple degrees of freedom. Functions with independent variables corresponding to each of the degrees of freedom are often used to model these systems, and multivariable calculus provides tools for characterizing the system dynamics.

Multivariate calculus is used in the optimal control of continuous time dynamic systems. It is used in regression analysis to derive formulas for estimating relationships among various sets of empirical data.

Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. In economics, for example, consumer choice over a variety of goods, and producer choice over various inputs to use and outputs to produce, are modeled with multivariate calculus.

Non-deterministic, or stochastic systems can be studied using a different kind of mathematics, such as stochastic calculus.

See also

[edit]

References

[edit]
  1. ^ a b c d e f g Richard Courant; Fritz John (14 December 1999). Introduction to Calculus and Analysis Volume II/2. Springer Science & Business Media. ISBN 978-3-540-66570-0.
  2. ^ Spivak, Michael (1965). Calculus on Manifolds. New York: W. A. Benjamin, Inc. ISBN 9780805390216.
[edit]
黑豚肉是什么肉 三点水弘读什么 ellesse是什么牌子 车抛锚是什么意思 子宫内膜脱落是什么意思
唾液臭是什么原因 肚子疼是什么原因 万病之源是什么 igm抗体阳性是什么意思 球蛋白偏高是什么意思
手麻木吃什么药好 吃什么可以美白 单人旁的字有什么 牛肉烧什么菜最好吃 什么是应激反应
牙疼可以吃什么药 紫药水是什么 牛黄清心丸适合什么人群吃 医保报销需要什么材料 尖斌卡引是什么意思
幽门杆菌吃什么药hcv8jop8ns7r.cn 左边偏头痛什么原因hcv9jop2ns0r.cn 香仪是什么意思hcv9jop7ns0r.cn 物流是什么hcv8jop5ns2r.cn 不什么好什么hcv9jop6ns0r.cn
诚不我欺什么意思xscnpatent.com 茄子吃了有什么好处bjcbxg.com 槿字五行属什么hcv8jop8ns3r.cn 诺诗兰属于什么档次hcv8jop3ns4r.cn 什么牌子充电宝好hcv8jop8ns2r.cn
离异什么意思hcv8jop9ns2r.cn 梅毒有什么症状hcv8jop0ns1r.cn 肘是什么意思hcv9jop2ns4r.cn 牙套脸是什么样hcv9jop1ns0r.cn 伤情鉴定需要什么材料hcv8jop4ns3r.cn
醉清风是什么意思hcv8jop2ns5r.cn 肾蕨是什么植物hcv8jop4ns4r.cn 今天股市为什么暴跌hcv9jop2ns8r.cn 更年期是什么wzqsfys.com 什么叫肺间质病变hcv8jop1ns2r.cn
百度