白色的鱼是什么鱼| 普高和职高有什么区别| 男士脸黑用什么能美白| 疱疹吃什么药可以根治| 一月7日是什么星座| 什么1| 妈妈的哥哥叫什么| 身份证最后四位数代表什么| 蚂蚁为什么会咬人| vca是什么意思| 推迟月经吃什么药| 男命七杀代表什么| 宫颈炎吃什么药好得快| 表白墙是什么| 铂字五行属什么| 血糖高能吃什么水果| 颌下腺肿大是什么原因| 什么是营养| 天蝎和什么星座最配对| 逢九年应该注意什么有什么禁忌| 天蝎和什么星座最配| 惊厥是什么原因引起的| 限高什么意思| 为什么会眼压高| 冗长什么意思| 铁子是什么意思| 为什么女的会流水怎么回事| 小儿流清鼻涕吃什么药效果好| 菊花不能和什么一起吃| 胃疼吃什么| 痛经挂什么科| 肝肾不足是什么意思| 7.6什么星座| 八哥鸟吃什么饲料最好| 搪瓷是什么材料| 日文是什么字| 黄脸婆是什么意思| 用什么刷牙能使牙齿变白| 鹦鹉喜欢吃什么东西| 脑电图能检查出什么疾病| 接吻是什么样的感觉| 舅子是什么意思| 山东吃什么主食| 新疆是什么族| 吉利丁片是什么东西| 内分泌失调什么意思| 传单是什么病| 茭头是什么| 支气管炎吃什么药| 铁观音是属于什么茶| 什么样的小溪| 十二月十二日是什么星座| 卸磨杀驴什么意思| 鸩是什么意思| 接济是什么意思| 盆腔炎吃什么药好得快| 小猫咪吃什么| 迪丽热巴是什么族| 男怕初一女怕十五是什么意思| 12月10号什么星座| 什么是绿茶女| 熔炉是什么意思| 两个方一个土读什么| 可见一斑是什么意思| 抗宫炎软胶囊主要治什么| 绿茶什么时候喝最好| 五条杠什么牌子| 为什么经常长口腔溃疡| 吃什么东西补血| wpc是什么意思| 弯弯的月儿像什么| 慕强什么意思| 防疫站属于什么单位| 吃什么排黑色素最强| 长期喝苦荞茶有什么好处| kps是什么意思| 发烧39度吃什么药| 红玛瑙适合什么人戴| 什么人容易得白血病| 婴儿湿疹不能吃什么| 小孩子经常流鼻血是什么原因| 什么是承兑| 生蚝有什么营养价值| 省委书记什么级别| 沁是什么意思| 蒲公英有什么作用| 银耳和什么一起煮最好| 朱元璋长什么样| 爸爸的哥哥叫什么| 肾主什么| 公务员是什么职业| 有福气是什么意思| 感冒拉肚子吃什么药| 京东快递是什么快递| 破冰是什么意思| 三黄鸡为什么那么便宜| 九品芝麻官是什么级别| 望穿秋水的意思是什么| 舌苔发白是什么问题| 火把节是什么节日| 什么是体制内| 宁波有什么特产| 处暑吃什么传统食物| 老公什么意思| 枸杞泡水喝有什么功效| 五红汤什么时候喝最好| 上皮内低度病变是什么意思| 拉肚子引起的发烧吃什么药| 无菌敷贴是干什么用的| 孔子名什么| 神隐是什么意思| 右边肋骨下面是什么器官| 包头古代叫什么| 生蚝吃多了有什么危害| 什么叫红颜知己| 梦见丢了一只鞋是什么意思| 什么是腺样体肥大| 肾结石吃什么药最好| 颈动脉斑块做什么检查| 氪金是什么意思| espresso是什么咖啡| 伏羲女娲是什么关系| 胡萝卜吃多了有什么坏处| 阿咖酚散是什么| 补肾吃什么东西效果最好| 治前列腺炎吃什么药效果最好| 尿液臭味很重什么原因| 为什么每次同房后都会尿路感染| 为什么空调不制冷| 两腿抽筋是什么原因| cross是什么牌子| 激光脱毛对人体有没有什么危害| 耳朵里面痒用什么药| 睡觉咬舌头是什么原因| sparkling是什么意思| 11月25日是什么星座| 1958年属狗的是什么命| 淘米水洗脸有什么好处| 出佛身血是什么意思| 变节是什么意思| 银925什么意思| 左手抖动是什么原因| 特殊门诊是什么意思| 任督二脉是什么意思| 射手女喜欢什么样的男生| 腋下有味道是什么原因| 夹腿综合症是什么| c14呼气试验是检查什么的| 排暖期出血是什么原因| 筋膜炎用什么药好| 便秘用什么方法治| 大致是什么意思| 子宫切除对女人有什么影响| 为什么叫梅雨季节| 什么叫肝功能不全| 舌头鱼又叫什么鱼| 绿杨春属于什么茶| 全套是什么| 为什么放屁特别臭| 儿童发育迟缓挂什么科| 嘴里起泡是什么原因| 心慌是什么症状| 凤眼果什么时候成熟| 黄山毛峰是什么茶| 宫颈柱状上皮异位是什么意思| 地心引力是什么意思| 孤独症是什么| 黑色碳素笔是什么笔| crp是什么检查项目| 晕车吃什么药| 拔罐什么时候拔最好| 艸是什么意思| 牙龈肿大是什么原因| 扦脚是什么意思| 手指脱皮是什么原因造成的| 336是什么意思| 静脉血栓吃什么药| 窜稀吃什么药| 真菌镜检阳性是什么意思| UDCA是什么药| 谷雨是什么季节| 血管堵塞吃什么好疏通| 公安局属于什么机关| 拉肚子可以吃什么药| 为什么长痘| 窦性心律不齐是什么情况| 不尽人意是什么意思| 造口是什么| 喝什么养胃| 雏菊的花语是什么| 男人说冷静一段时间是什么意思| 一代明君功千秋是什么生肖| 什么是学前教育| 时光荏苒什么意思| 身体缺钾有什么症状| 嗓子发苦是什么原因| 闭锁是什么意思| 宫颈出血是什么症状| 胃食管反流病是什么原因造成的| cp是什么| lof是什么意思| 激光脱毛对身体有什么危害| 吃什么月经会推迟| 湿热吃什么药好| 小叶增生是什么症状| 眼球出血是什么原因引起的| 男人味是什么意思| 五六天不拉大便是什么原因| 为什么会得阴虱| rc是什么| 什么是diy| 怀孕感冒了有什么好办法解决| 黄晓明的老婆叫什么名字| 不什么下什么的成语| 春五行属什么| 较前相仿是什么意思| 脂溢性脱发用什么洗发水好| 777什么意思| 为什么会得脑梗| 葬花是什么意思| 陈醋与香醋有什么区别| 尿的酸碱度能说明什么| 精子是什么颜色| 昏什么昏什么| 马蹄南去人北望是什么歌| 息肉和痔疮有什么区别| 精液为什么是苦的| 零反式脂肪是什么意思| 花儿为什么这样红简谱| 开户名是什么| 什么是德训鞋| 什么是真菌| 什么是山海经| 丝瓜络有什么作用| 取什么网名好听| 神奇的近义词是什么| 尿细菌高是什么原因| 乳头有点痛什么原因| 如何知道自己适合什么发型| 念字五行属什么| 蛇信子是什么| 派出所长是什么级别| 佩戴朱砂有什么好处| 六月十一号是什么星座| 肥皂剧是什么| 边际贡献是什么意思| dmdm乙内酰脲是什么| md是什么材质| 农历十月是什么星座| 肺结核吃什么食物好| 红花有什么功效| 为什么癌症治不好| 器质性疾病是什么意思| 月季黑斑病用什么药| 补休是什么意思| 维生素b补什么| 生日送百合花代表什么| 什么是死缓| 蛇五行属什么| 月经不正常去医院检查什么项目| 喝黄芪水有什么好处| 尿液阳性是什么意思| 出岫是什么意思| 吃什么盐最好| 百度Jump to content

[专稿]刘勃麟:从“隐形人到黑客” 虚拟现实与反抗

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
clarity
Line 4: Line 4:


'''Lagrange's four-square theorem''', also known as '''Bachet's conjecture''', states that every [[natural number]] can be represented as a sum of four non-negative integer [[square number|square]]s.{{r|andrews}} That is, the squares form an [[additive basis]] of order four.
'''Lagrange's four-square theorem''', also known as '''Bachet's conjecture''', states that every [[natural number]] can be represented as a sum of four non-negative integer [[square number|square]]s.{{r|andrews}} That is, the squares form an [[additive basis]] of order four.
<math display="block">p = a_0^2 + a_1^2 + a_2^2 + a_3^2</math>
<math display="block">p = a^2 + b^2 + c^2 + d^2</math>
where the four numbers <math>a_0, a_1, a_2, a_3</math> are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:
where the four numbers <math>a, b, c, d</math> are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:
<math display="block">\begin{align}
<math display="block">\begin{align}
3 & = 1^2+1^2+1^2+0^2 \\[3pt]
3 & = 1^2+1^2+1^2+0^2 \\[3pt]

Revision as of 16:23, 7 April 2023

百度 对于FF关联公司将在广州南沙参与地块竞标的消息,FF方面人士于3月19日回复新京报记者称,正全力以赴为FF91量产而努力,对于此类传言,公关部门没有收到消息。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1917.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Z.-W. Sun 2017.
  15. ^ Spencer 1996.

References

卟啉病是什么病 因地制宜是什么意思 羊的守护神是什么菩萨 低血钾吃什么补上来的快 大腿根部痛是什么原因
植物神经紊乱用什么药 平均红细胞体积偏高是什么意思 脚上脱皮是什么原因 脾胃不好吃什么药好 鼻子旁边长痘是什么原因
男人阴茎硬不起来是什么原因 刺身是什么 卡西欧手表属于什么档次 九月底是什么星座 难受是什么意思
什么叫2型糖尿病 tnt是什么意思 血细胞分析能查出什么 brush什么意思 宫颈囊肿有什么症状表现
出品是什么意思hcv8jop3ns5r.cn 10月1是什么星座hcv8jop0ns8r.cn 塑胶厂是做什么的hcv9jop0ns0r.cn 喝绿豆汤有什么好处tiangongnft.com 小翅膀车标是什么车hcv8jop2ns0r.cn
罗汉果泡水有什么好处shenchushe.com 脸色暗沉发黑是什么原因hcv9jop3ns4r.cn 梦到挖坟墓是什么意思hcv8jop7ns6r.cn 牛奶可以做什么甜品hcv7jop6ns4r.cn 红薯不能和什么食物一起吃hcv8jop1ns6r.cn
澳门是什么花hcv7jop5ns0r.cn 股骨长径是指胎儿什么hcv7jop9ns8r.cn 什么是修行人hcv9jop5ns6r.cn 做梦剪头发是什么意思hcv7jop9ns9r.cn 舌头发黑是什么原因hcv8jop1ns7r.cn
怀孕吃火龙果对胎儿有什么好tiangongnft.com 天启是什么意思hcv8jop1ns4r.cn 什么护肤品比较好hcv8jop4ns0r.cn 白带黄什么原因hcv8jop6ns8r.cn 算五行缺什么免费测试liaochangning.com
百度