clean什么意思| 胸ct和肺ct有什么区别| 醋泡葡萄干有什么功效和作用| 女人喝劲酒有什么好处| 加湿器什么季节用最好| 人参和什么泡酒最好| 阳痿是什么原因造成的| 为什么会梦游| 发烧感冒挂什么科室| 梅雨季节是什么意思| 男人毛发旺盛说明什么| 嗝什么意思| 出汗少的人是什么原因| 壬午是什么生肖| 胆碱酯酶高是什么意思| 出入是什么意思| 割礼是什么意思| 什么安全套好用| 春宵一刻值千金什么意思| 财评是什么意思| 疝外科是治什么病的| 莲蓬乳是什么| 4月10日什么星座| 大红袍属于什么茶| 抠鼻表情什么意思| 指腹脱皮是什么原因| 低钾血症是什么意思| 吃辣的胃疼吃什么药| 7月15日是什么日子| 清歌是什么意思| 天是什么结构的字| 雪纳瑞什么颜色最贵| 什么人招蚊子| 四平八稳是什么意思| hp代表什么意思| 谷氨酰转肽酶高什么原因| 白露是什么季节的节气| 外人是什么意思| 吃什么可以减肥| 变化无穷是什么生肖| 出现血尿是什么原因| 免去职务是什么意思| 心脏为什么会跳动| 吃什么容易长胖| 子鼠是什么意思| 小狗可以吃什么水果| 心脏支架和搭桥有什么区别| 变形虫是什么生物| 喝什么酒容易醉| 酸野是什么| 尿频尿不尽吃什么药| 封心锁爱什么意思| 哦耶是什么意思| 咽炎吃什么药| 尿隐血阳性是什么意思| 软开是什么| 女生下面长什么样| 杜字五行属什么| 胰岛素过高会导致什么| 腰肌劳损什么症状| 湿气重不能吃什么| 嘌呤是什么东西| 数据中心是什么| 酒后头疼吃什么药| 什么的草地| 不屑一顾的意思是什么| 小猫的胡须有什么作用| 什么止疼药见效最快| 四月二十九是什么星座| 胃酸过多吃什么好| 什么枝什么叶| 打开心扉是什么意思| 1号来月经什么时候是排卵期| 叫床什么意思| 前列腺炎吃什么药| 腹腔淋巴结是什么意思| 面部提升紧致做什么效果最好| 老是想睡觉是什么原因| 乳腺点状强回声是什么意思| 不成功便成仁的仁是什么意思| 出品是什么意思| 胃窦溃疡a1期是什么意思| 同房出血是什么原因造成的| 咳嗽有黄痰吃什么消炎药| 为什么姓张的不用说免贵| 细菌性阴道炎用什么药好| 什么是变应性鼻炎| 干咳是什么原因| 腿弯后面疼是什么原因| 月经不正常是什么原因| 脚上长痣代表什么| 中耳炎不能吃什么食物| 为什么会全身酸痛| 羊水指数是什么意思| 嘴巴苦苦的是什么原因| 12月10号是什么星座| 赛能是什么药| 北阳台适合种什么植物| 蹦蹦跳跳是什么生肖| 拔罐拔出水是什么原因| 什么是比特币| 炸东西用什么淀粉| 阴道里面瘙痒是什么原因| 更年期出汗吃什么药| 三观不合是什么意思| 铅中毒用什么解毒| 什么叫洗钱| 老舍有什么称号| 五月10号是什么星座| 为什么出汗特别多| 拔牙需要注意什么| 脑供血不足吃什么药| 骨折吃什么恢复得快| 止疼药吃多了有什么副作用| 高血糖吃什么食物好| 胆囊炎吃什么消炎药| 吕布的马叫什么| 告诫是什么意思| 鲲之大的之是什么意思| 吃什么药去体内湿气| 染色体xy代表什么| 八岁属什么生肖| 右派是什么意思| 羽五行属什么| 大宗物品是什么意思| gas是什么意思| 亦或是什么意思| 诺欣妥是什么药| xxoo什么意思| 游山玩水是什么意思| 元宵节有什么活动| 什么叫不动产| 什么分明| 妄想症吃什么药| 缅怀什么意思| 小孩吃什么提高免疫力| 补血吃什么药最快最好| 酥油是什么油| 什么食物补锌效果最好| 妈妈最大的愿望是什么| 生理需求是什么意思| 黄疸是什么引起的| 吃避孕药为什么要吃维生素c| 十一点是什么时辰| 肚子左侧是什么器官| ad滴剂什么时候吃最好| 臭虫长什么样子图片| 梦见自己生了个女孩是什么意思| 喉咙干燥是什么原因| 祖先是什么意思| 什么军什么马| 闰六月要给父母买什么| 什么自语| 咳嗽喝什么饮料| 哥谭市是什么意思| 罚的部首是什么| 茶叶五行属什么| 录取线差是什么意思| 缓释是什么意思| 康熙的儿子叫什么| 口炎读什么| 生化检查能查出什么病| 小儿风寒感冒吃什么药| 下午三点多是什么时辰| 什么是共情| 逆天改命是什么意思| 碱中毒是什么引起的| 平权是什么意思| 垂问是什么意思| 寿辰是什么意思| 梦见捞鱼是什么意思| 精囊腺囊肿是什么意思| 腱鞘囊肿是什么原因| 为什么脚会抽筋| 处女座的幸运色是什么颜色| 新生儿白细胞高是什么原因| 食道炎吃什么药好| 血象高会导致什么后果| 尿胆红素阳性什么意思| 记吃不记打的下一句是什么| 梦见手机失而复得是什么意思| 铁蛋白低吃什么可以补| 牛肉用什么炒好吃| 怀孕喝酒会有什么反应| 头皮发红是什么原因| 死鬼什么意思| 捡到鹦鹉是什么预兆| 黑马是什么意思| 什么是春梦| 观音坐莲什么意思| 考妣是什么意思| 膝跳反射属于什么反射| 玻璃是什么做的| 青岛啤酒节什么时候| 鲨鱼是什么动物| o型血吃什么瘦的最快| 无稽之谈是什么意思| 林子祥属什么生肖| 颈椎压迫神经吃什么药| 肺部结节吃什么药| 护佑是什么意思| 炎症吃什么消炎药| 即什么意思| 小麻雀吃什么| 慈禧和光绪是什么关系| 急性结肠炎什么症状| 吃芹菜有什么好处| 蕾字五行属什么| ur是什么缩写| 意念是什么意思| 良民是什么意思| 风疹吃什么药| 怀孕后不能吃什么| 今天属什么生肖日历| 黄色裤子搭配什么颜色上衣| 瘴气是什么| 流涎是什么意思| 突然流鼻血是什么征兆| 榴莲不能与什么食物一起吃| 什么的亮光| 棉絮是什么意思| 无大碍是什么意思| 不成敬意是什么意思| 高血钾是什么意思| 为什么明明很困就是睡不着| 月经不来又没怀孕是什么原因| opo是什么| 菟丝子是什么| 下眼袋发青是什么原因| 尿液白细胞高是什么原因| 舌强语謇是什么意思| 9月11号是什么星座| 九月是什么星座| 低聚异麦芽糖是什么| 小孩子上火吃什么能降火| 结婚15年是什么婚| 沃尔玛是干什么的| 茭白不能和什么一起吃| 等闲识得东风面什么意思| 肝内脂质沉积是什么意思| 水痘长什么样子的图片| 苹果补充什么维生素| 犀利哥什么意思| 蒲公英有什么作用| 子宫内膜为什么会增厚| s925银是什么意思| 气道高反应是什么意思| 老想放屁是什么原因| 胰岛素偏低是什么原因| 专著是什么| 守株待兔是什么意思| 什么一| 坐飞机不能带什么| 蒙脱石是什么| 胆在什么位置图片| 跖围是什么意思| 拖油瓶是什么意思| 什么可以消肿快的方法| 尿路感染吃什么药效果最好| gv是什么意思| 全身发黄是什么原因| 四世同堂什么意思| r13是什么牌子| 下午六点是什么时辰| 百度Jump to content

phoebe是什么意思

From Wikipedia, the free encyclopedia
Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem states that the analogue in four dimensions yields square roots of every natural number
百度 有人看到郝诒纯年轻时的照片说:“像阮玲玉。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four: where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

[edit]

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

[edit]

The classical proof

[edit]

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

[edit]

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

[edit]

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

[edit]

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

[edit]

The number of representations of a natural number n as the sum of four squares of integers is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

[edit]

The sequence of positive integers which have only one representation as a sum of four squares of non-negative integers (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

[edit]

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal to n can be written as a sum of at most 4 elements of S.[15]

See also

[edit]

Notes

[edit]
  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1916.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Sun 2017.
  15. ^ Spencer 1996

References

[edit]
[edit]
心气虚吃什么食物补 头顶秃了一小块是什么原因怎么办 bld是什么意思 南京有什么好玩的景点 巴基斯坦人说什么语言
红糖水什么时候喝 房性早搏什么意思 西昌火把节是什么时候 胸疼什么原因 孕晚期羊水多了对宝宝有什么影响
血糖高吃什么药最好 酸野是什么 中性粒细胞绝对值偏高是什么原因 白介素是什么 什么是周岁
一热就头疼是什么原因 病态是什么意思 合肥原名叫什么名字 阿胶有什么功效 烧伤用什么药
什么药和酒一起吃必死hkuteam.com 偶像是什么意思hcv9jop5ns9r.cn 向心性肥胖是什么意思hcv8jop3ns6r.cn 太阳星座是什么意思travellingsim.com 乌药别名叫什么hcv9jop0ns0r.cn
裸辞是什么意思hcv7jop7ns2r.cn 什么叫便秘hcv8jop5ns7r.cn 哈字五行属什么hcv8jop1ns6r.cn 人心隔肚皮什么意思hcv8jop0ns9r.cn 肠胃感冒什么症状jinxinzhichuang.com
ige高是什么意思hcv9jop4ns5r.cn tax是什么意思hcv8jop6ns3r.cn 什么梳子梳头最好jiuxinfghf.com 龟头炎的症状是什么样hcv8jop7ns3r.cn 攒肚是什么意思hcv8jop4ns7r.cn
吃西洋参有什么好处hcv8jop8ns5r.cn 白带多是什么原因引起的hcv9jop5ns2r.cn 心律不齐房颤吃什么药hcv8jop5ns0r.cn 忧愁是什么意思hcv9jop8ns1r.cn 拿铁咖啡什么意思tiangongnft.com
百度