户主有什么权利| 腰疼贴什么膏药| 又当又立是什么意思| 江西老表是什么意思| 1945年是什么年| 婆什么起舞| 父亲坐过牢对孩子有什么影响| 三十年婚姻是什么婚| 小肚胀是什么原因| 什么茶女人长期喝最好| 什么品种的芒果最好吃| 无妄之灾什么意思| 餐后血糖高是什么原因| 红细胞体积偏高是什么意思| 七月有什么花| 红斑狼疮是什么症状| 三摩地是什么意思| 女人脚浮肿是什么原因| 百合为什么是苦的| 疱疹性咽峡炎吃什么食物| 雌二醇低是什么原因造成的| 斑点狗是什么品种| 晚上7点是什么时辰| 肋骨下面是什么部位| 甲胎蛋白什么意思| 奴才是什么意思| 睡觉经常流口水是什么原因| 支气管疾患是什么意思| 男的纹般若有什么寓意| 麦克白夫人什么意思| 2026年是什么命| 高锰酸钾用什么能洗掉| 石墨烯属于什么材料| 梅雨季节是什么时间| 平板电脑与笔记本电脑有什么区别| 雨中漫步是什么意思| 近视是什么| 自卑什么意思| 女性尿道炎吃什么药| 打了鸡血是什么意思| 西红柿和什么榨汁减肥| 明星每天都吃什么| surprise什么意思| 5岁属什么生肖| 挂号信什么意思| 男士蛋皮痒用什么药| 寄生虫长什么样子| 双职工是什么意思| 勃起不坚硬吃什么药| 插入是什么感觉| 胸为什么一大一小| 突然眩晕是什么原因| 声线是什么意思| 窗口期什么意思| 梦见橘子是什么意思| 小孩睡觉说梦话是什么原因| 登革热是什么病| 空降兵属于什么兵种| 肤如凝脂是什么意思| 麻头是什么| 哭得什么| 吃什么补脑子增强记忆力最快| 甲状腺结节什么症状| 梦见白萝卜是什么意思| 乙肝三项检查什么| 什么是物理学| 飧泄是什么意思| 什么是角| 地板砖什么颜色好看| 海带排骨汤海带什么时候放| 类风湿关节炎吃什么药| 经常困想睡觉是什么问题| 鱼油有什么功效| 一黑一白是什么蛇| hpv是什么| 老年人手抖是什么原因| 10月13号是什么星座| 白蛋白下降是什么原因| 近视散光是什么意思| 脑供血不足有什么症状| 什么现象说明奶吸通了| ul是什么单位| 茔是什么意思| 做梦梦到吵架是什么意思| kenzo是什么牌子| 糖是什么意思| 做妇科检查前需要注意什么| 碱性磷酸酶高吃什么药| 男人有霉菌是什么症状| 咳嗽有痰吃什么水果| 克拉是什么单位| 断交社保有什么影响| 血浆蛋白是什么| 全友床垫属于什么档次| 做梦梦到老公出轨代表什么预兆| 胎位头位是什么意思| 脚心热吃什么药| 口若什么| 什么是低保| 蜘蛛的血液是什么颜色| 有色眼镜是什么意思| 小辣椒是什么意思| 老鸨什么意思| 包皮有什么影响| 籍贯写什么| 自然周是什么意思| 胃痛胃胀吃什么药| 苦荞有什么作用| 电疗是什么| 祛湿吃什么食物| 糖链抗原高是什么原因| 五十年婚姻是什么婚| 手臂痛挂什么科| 打包是什么意思| 尿道感染是什么原因引起的| 粉色裤子配什么上衣好看| 羊鞭是什么| 旺盛是什么意思| 囊肿是什么原因| 日本人为什么长寿| 高血压一级是什么意思| 笑掉大牙是什么动物| 离职什么意思| 翡翠的五行属性是什么| 停月经有什么症状| opt是什么意思| 煮酒论英雄什么意思| 请佛容易送佛难什么意思| 秃鹫是什么动物| 拉杆箱什么材质好| 宫颈细胞学检查是什么意思| bull是什么意思| 舔逼什么感觉| 什么环境唱什么歌原唱| 甲功三项查的是什么| 林俊杰为什么不结婚| 好景不长是什么意思| 暗财是什么意思| 银红色是什么颜色| 骄阳似火是什么意思| 什么虎不吃人| 变化无穷是什么生肖| 尿液有白色絮状物是什么原因| 部队政委是什么级别| 孕前检查一般有什么项目| 眼屎多什么原因| 梦到女儿死了是什么意思| 布谷鸟什么时候叫| 16开是什么意思| 什么如镜| 你干什么呢| 补气血喝什么汤| 肺部阴影意味着什么| 得宝松是什么药| 老年人喝什么蛋白粉好| 文科和理科有什么区别| 胎元是什么意思| 手脚发麻挂什么科| 避孕药叫什么| 近视散光是什么意思| 胆囊壁毛糙是什么意思| 肾病综合征是什么病| 豆薯是什么| 生日送什么花合适| g是什么牌子| 染发膏用什么能洗掉| 感恩节什么时候| saa偏高说明什么| 腹水是什么症状| 阁僚是什么意思| 拉泡泡屎是什么原因| 肉松是什么做的| 荷花代表什么生肖| 梅毒为什么会自愈| 沙茶酱什么味道| 殆什么意思| 月经期后是什么期| 梦见老公出轨预示什么| 双子座的幸运色是什么| 窦炎症是什么病| 口腔疱疹用什么药| 间接胆红素是什么意思| 打飞机什么意思| 狗狗能看见什么颜色| 上热下寒吃什么药| 双肺条索是什么意思| 脸颊两边长斑是什么原因| 勤代表什么生肖| 柿子不能和什么同吃| 三代试管是什么意思| 包皮瘙痒用什么药| 牙疼吃什么药效果最好| 中药为什么那么苦| 什么时候跑步最好| 下焦湿热阴囊潮湿吃什么药| 当兵有什么要求| 结婚9年是什么婚| 乙酰氨基酚片是什么药| 肝火旺盛吃什么食物好| 桃花劫是什么意思| 代用茶是什么意思| 书到用时方恨少什么意思| 血糖高看什么科| 黄瓜又什么又什么| 煮花生放什么调料好吃| 什么是天干地支| 未时属什么生肖| 中秋节适合吃什么菜| 前列腺特异性抗原是什么意思| 不来姨妈挂什么科| 点心是什么意思| 无厘头什么意思| 2003年属羊的是什么命| 男属鸡的和什么属相最配| 心动过缓吃什么药| 检查阑尾炎挂什么科| 蓝色配什么颜色好看| 腱鞘囊肿挂什么科| yankees是什么牌子| 什么人不能吃黄精| 十月初七是什么星座| 肝昏迷是什么意思| 什么的目光| 冬至要注意什么| 五官是什么| 吸顶灯什么牌子的好| 争辩的近义词是什么| 床上放什么可以驱虫| 玉皇大帝姓什么| 女性什么时候最容易怀孕| 筛子是什么意思| canon是什么意思| 珍惜当下是什么意思| 阴茎瘙痒是什么原因| 小心眼是什么意思| 查血脂挂什么科| 一什么而什么的成语| 中耳炎挂什么科| 一级医院是什么意思| 男人吃什么更持久| 褒义词是什么意思| 嘱托是什么意思| 桃花眼的女人什么命| 中单是什么| 亚麻籽油是什么油| 7月24是什么星座| 数字五行属什么| 过敏性鼻炎用什么药效果最好| 瘦马什么意思| 血管堵塞吃什么好| 日本人什么时候投降的| 幽门螺旋杆菌什么意思| 古代上元节是什么节日| 1971年属猪的是什么命| abi医学上是什么意思| np文是什么意思| 无水酥油是什么| 帅是什么意思| 三文鱼刺身是什么意思| 公分是什么| 含服是什么意思| 风生水起是什么生肖| 梦见大白蛇是什么预兆| 便秘屁多是什么原因| 百度Jump to content

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 2a02:120b:2c08:2960:41d:914c:a13b:74d1 (talk) at 00:06, 28 February 2021 (Further refinements: The original description was weird and didn't make sense.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
百度 党的十八大报告中明确提出,“坚持走中国特色新型工业化、信息化、城镇化、农业现代化道路,推动信息化和工业化深度融合、工业化和城镇化良性互动、城镇化和农业现代化相互协调,促进工业化、信息化、城镇化、农业现代化同步发展”,并要求“加快实施主体功能区战略,推动各地区严格按照主体功能定位发展,构建科学合理的城市化格局、农业发展格局、生态安全格局”。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four.

where the four numbers are integers. For illustration, 3, 31 and 310 can be represented as the sum of four squares as follows:

Know that 310 can also be represented as the sum of these four squares: , as well as .

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[1]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[2]

The classical proof

Several very similar modern versions[3][4][5] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[6] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

One of the ways to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[7] The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula

where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number

where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Langrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that

and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[7] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have

so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[8] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[9])

Algorithms

Michael O. Rabin and Jeffrey Shallit[10] have found randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time .

Number of representations

The number of representations of a natural number n as the sum of four squares is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as

where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[11]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[11]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun [12] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal n can be written as a sum of at most 4 elements of S.[13]

See also

Notes

  1. ^ Ireland & Rosen 1990.
  2. ^ Sarnak 2013.
  3. ^ Landau 1958, Theorems 166 to 169.
  4. ^ Hardy & Wright 2008, Theorem 369.
  5. ^ Niven & Zuckerman 1960, paragraph 5.7.
  6. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  7. ^ a b Stillwell 2003, pp. 138–157.
  8. ^ Ramanujan 1917.
  9. ^ Oh 2000.
  10. ^ Rabin & Shallit 1986.
  11. ^ a b Williams 2011, p. 119.
  12. ^ Z.-W. Sun 2017.
  13. ^ Spencer 1996.

References

  • Hardy, G. H.; Wright, E. M. (2008) [1938]. Heath-Brown, D. R.; Silverman, J. H.; Wiles, Andrew (eds.). An Introduction to the Theory of Numbers (6th ed.). Oxford University Press. ISBN 978-0-19-921985-8. {{cite book}}: Invalid |ref=harv (help)
  • Ireland, Kenneth; Rosen, Michael (1990). A Classical Introduction to Modern Number Theory (2nd ed.). Springer. doi:10.1007/978-1-4757-2103-4. ISBN 978-1-4419-3094-1. {{cite book}}: Invalid |ref=harv (help)
  • Landau, Edmund (1958) [1927]. Elementary Number Theory. Vol. 125. Translated by Goodman, Jacob E. (2nd ed.). AMS Chelsea Publishing. {{cite book}}: Invalid |ref=harv (help)
  • Niven, Ivan; Zuckerman, Herbert S. (1960). An introduction to the theory of numbers. Wiley. {{cite book}}: Invalid |ref=harv (help)
  • Oh, Byeong-Kweon (2000). "Representations of Binary Forms by Quinary Quadratic Forms" (PDF). Trends in Mathematics. 3 (1): 102–107. {{cite journal}}: Invalid |ref=harv (help)
  • Rabin, M. O.; Shallit, J. O. (1986). "Randomized Algorithms in Number Theory". Communications on Pure and Applied Mathematics. 39 (S1): S239 – S256. doi:10.1002/cpa.3160390713. {{cite journal}}: Invalid |ref=harv (help)
  • Ramanujan, S. (1917). "On the expression of a number in the form ax2 + by2 + cz2 + dw2". Proc. Camb. Phil. Soc. 19: 11–21. {{cite journal}}: Invalid |ref=harv (help)
  • Sarnak, Peter (2013). "The Ramanujan Conjecture and some Diophantine Equations" (Lecture at Tata Institute of Fundamental Research). ICTS Lecture Series. Bangalore, India. {{cite web}}: Invalid |ref=harv (help)
  • Stillwell, John (2003). Elements of Number Theory. Undergraduate Texts in Mathematics. Springer. doi:10.1007/978-0-387-21735-2. ISBN 978-0-387-95587-2. Zbl 1112.11002. {{cite book}}: Invalid |ref=harv (help)
  • Sun, Z.-W. (2017). "Refining Lagrange's four-square theorem". J. Number Theory. 175: 167–190. arXiv:1604.06723. doi:10.1016/j.jnt.2016.11.008. {{cite journal}}: Invalid |ref=harv (help)
  • Williams, Kenneth S. (2011). Number theory in the spirit of Liouville. London Mathematical Society Student Texts. Vol. 76. Cambridge University Press. ISBN 978-0-521-17562-3. Zbl 1227.11002. {{cite book}}: Invalid |ref=harv (help)
  • Spencer, Joel (1996). "Four Squares with Few Squares". Number Theory: New York Seminar 1991–1995. Springer US. pp. 295–297. doi:10.1007/978-1-4612-2418-1_22. ISBN 9780387948263.
手指关节疼是什么原因 病毒性扁桃体炎吃什么药 肺炎是什么原因引起的 气运是什么意思 hpv52型阳性是什么意思严重吗
胃顶的难受是什么原因 男生小肚子疼是什么原因 扁平疣是什么原因长出来的 枸杞和什么搭配壮阳 守株待兔是什么意思
祭祀什么意思 棕色和什么颜色搭配好看 南京为什么叫金陵 灵芝有什么作用与功效 体征是什么意思
运动后恶心想吐是什么原因 anna是什么意思 脂肪肝吃什么食物 做梦牙掉了是什么征兆 忉利天是什么意思
什么鸟会说话hcv8jop3ns5r.cn 玛尼石是什么意思hcv8jop2ns5r.cn 小炒肉用什么肉hcv7jop7ns1r.cn 月经有黑色血块是什么原因wuhaiwuya.com 堂客是什么意思hcv8jop5ns7r.cn
收放自如是什么意思hcv7jop9ns3r.cn 深圳属于什么气候hcv9jop1ns5r.cn 孩子发烧手脚冰凉是什么原因hcv7jop6ns5r.cn 孕妇吃核桃对胎儿有什么好处hcv8jop9ns2r.cn 养生馆是干什么的baiqunet.com
为什么会流鼻血什么原因引起的hcv8jop0ns5r.cn 眼黄瘤什么方法治疗最好hcv9jop7ns5r.cn gm是什么牌子hcv8jop0ns2r.cn 陶土色大便是什么颜色hcv9jop1ns8r.cn aids是什么病的简称hcv8jop7ns1r.cn
单核细胞是什么意思hcv9jop6ns2r.cn 什么交加hcv7jop9ns5r.cn 薛之谦属什么生肖hebeidezhi.com 六月五号是什么星座hcv7jop6ns1r.cn poscer是什么牌子手表beikeqingting.com
百度