prp治疗是什么意思| 香港商务签证需要什么条件| 尿酸高什么引起的| 爽文是什么意思| 煮牛肉放什么料| 玉兰花什么季节开| 炖牛肉放什么调料| 腹痛挂什么科| 沉珂是什么意思| 卡替治疗是什么意思| 莳是什么意思| 胃属于什么科室| 尿特别多是什么原因| 产后恶露是什么| 鸽子单眼伤风用什么药| 心功能一级什么意思| 五险一金包括什么| 黄水疮用什么药膏最快| 走路出汗多是什么原因| 右侧上颌窦粘膜增厚是什么意思| 面部提升做什么项目最好| 鄂尔多斯为什么叫鬼城| 10月19是什么星座| 姜子牙姓什么| 克罗心是什么档次| 姓姜的男孩起什么名字好| 小腿抽筋是什么原因| 相对湿度是什么意思| 慢性炎伴鳞化是什么意思| 爱情的故事分分合合是什么歌| 明太鱼是什么鱼| nl是什么单位| 早上吃什么水果最好| 破绽是什么意思| 荷尔蒙是什么东西| 记性不好吃什么药| 脾虚什么症状| 天荒地老是什么生肖| ABA是什么植物激素| 胆囊炎需要注意什么| 青蒜是什么| 入职需要准备什么材料| 盥洗室什么意思| 煮虾放什么| 红细胞压积什么意思| 蓟类植物是什么| 医院测视力挂什么科| 抑郁症发作是什么感觉| 无犯罪证明需要什么材料| 饭后痰多是什么原因| 蛇和什么相冲| 夏天什么面料最凉快| 左边脸长痘痘是什么原因| 吃蒸苹果有什么好处| 爆菊是什么意思| 带蜜蜡有什么好处| 东方蝾螈吃什么| 鸡蛋炒什么| 手指甲有竖纹是什么原因| 什么地舞动| 00属什么生肖| 北京的市花是什么| 622188开头是什么银行| 晚上睡觉脚抽筋是什么原因引起的| 为什么胃有灼热感| 硕士研究生是什么意思| 酸菜鱼的酸菜是什么菜| 有缘无分什么意思| 喝什么茶减肥效果最好| 下午七点是什么时辰| 最好的假牙是什么材质| 32周岁属什么生肖| 祎是什么意思| 七月二十九是什么星座| 青春痘是什么原因引起的| 痱子吃什么药| 西瓜有什么营养| ozark是什么牌子| 瘥是什么意思| 吃鸡是什么意思| 铠字五行属什么| 身上长小红点是什么原因| 新生儿超敏c反应蛋白高说明什么| dpa是什么意思| 头发细软是什么原因| 为什么腹部隐隐作痛| 70年属什么生肖| 换身份证需要带什么| 鱼跳出鱼缸有什么征兆| 为什么会有子宫肌瘤| 普洱茶有什么功效与作用| 阀值是什么意思| 老人吃什么钙片补钙效果最好| 氯雷他定片是治什么的| 手抽筋是什么原因引起的| 垂体泌乳素是什么意思| 龟头有点痒擦什么药| 吃什么预防脑梗| 什么是高危性行为| 梅花什么季节开| 91年是什么命| tg什么意思| 结节状高密度影是什么意思| 嗓子中间的那块小肉叫什么| 女生为什么有喉结| 脂膜炎是什么病| 梦到和老公吵架是什么意思| 近亲结婚生的孩子会得什么病| 胃药吃多了有什么副作用| 喜极而泣的意思是什么| 另起炉灶是什么意思| 什么情况需要打狂犬疫苗| 什么的足球| 产褥热是什么病| 好景不长是什么意思| 梦到钱丢了预示着什么| 头晕是什么原因引起| 人类的祖先是什么| 沏茶是什么意思| 刷酸什么意思| 双肾尿盐结晶是什么| 小鱼的尾巴有什么作用| 喉咙有痰是什么原因引起的| 男生下面叫什么| 什么东西在倒立之后会增加一半| 降肝火喝什么茶| 黑天鹅是什么意思| 爱哭的人是什么性格| 胃胀是什么原因| 什么是染色体| 咬牙齿是什么原因| 男人吃什么能延时| gfr医学上是什么意思| 眼睛经常充血是什么原因引起的| 刚拔完牙需要注意什么| 捡到鹦鹉是什么预兆| 真太阳时是什么意思| 最好的避孕方法是什么| 兔女郎是什么| 农历六月十三是什么星座| 毛囊炎用什么药膏| 商务专员是做什么的| 悟性高是什么意思| 辣子鸡属于什么菜系| 空调病吃什么药| 兔日冲鸡什么意思| 一什么永什么成语| 咽后壁淋巴滤泡增生吃什么药| 扩招是什么意思| 烧火棍是什么意思| 阿迪达斯是什么牌子| 早上6点到7点是什么时辰| 儿童风寒感冒吃什么药| 桑黄是什么树上长出来的| 麦冬长什么样| 吃什么食物可以降低尿酸| 生育保险是什么意思| 遥不可及是什么意思| 输钾为什么会痛| 重阳节为什么要插茱萸| 什么像什么比喻句| 胎盘前置是什么意思| 炖牛肉不放什么调料| 二月初二是什么星座| 拉肚子吃什么食物| 为什么会得口腔溃疡| 七月二十二什么日子| 红煞是什么意思| 水乳是什么| 宝宝爱出汗是什么原因| 苯扎氯铵是什么| 天指什么生肖| 明年是什么生肖| 为什么会得手足口病| 本科属于什么学位| 类风湿因子高吃什么药| 嗓子不舒服吃什么消炎药| 烧心吃什么马上能缓解| 亚硝酸钠是什么东西| 鱼龙混杂什么意思| 早晨起来手肿是什么原因| jerry英文名什么意思| 固执是什么意思| 新婚志喜是什么意思| 南瓜长什么样子的图片| 甲状腺球蛋白低是什么意思| 土色是什么颜色的图片| 粘胶是什么材质| 黄体破裂什么意思| 红细胞计数偏高是什么意思| 什么动物没有心脏| 手背肿胀是什么原因| 效应是什么意思| 阿托品是什么| 乌龟喜欢吃什么食物| 玫瑰糠疹是什么病| 低压偏高什么原因| 北京是我国的什么中心| 为什么男人喜欢女人的胸| 广东古代叫什么| 什么止痛药最快止痛| 什么是蚂蚁上树| 吹箫是什么意思| 箱涵是什么| 胆囊炎要吃什么药| 什么是横纹肌溶解症| 肚子疼是为什么| 孕妇用什么驱蚊最安全| 吃雪燕有什么好处| 高血糖什么原因引起| 有肾病的人吃什么好| 痔疮有什么症状| 菠菜是什么季节的菜| 乘务员是干什么的| 今年的属相是什么生肖| 为什么睡不醒| 什么进曹营一言不发| 心脏消融术是什么手术| 阴是什么生肖| 夫人是什么意思| 检查视力挂什么科| 汗蒸是什么意思| 梦见下大雨是什么预兆| lo娘是什么意思| 天珠到底是什么| 白细胞加号什么意思| 腰椎间盘膨出是什么意思| 什么东西能加不能减| 什么是非遗| 孩子鼻子流鼻血是什么原因| 嗝气是什么原因| 桃子有什么好处| 老年人手抖是什么原因| 等代表什么生肖| 十二月十二日是什么星座| 蜂蜜水什么时间喝最好| 7月14日什么星座| 红糖和黑糖有什么区别| 脸发黄是什么原因| 梦见好多动物是什么意思| 瑾字属于五行属什么| 内推是什么意思| 圣旨是什么意思| 虱子长什么样子图片| 半夜惊醒是什么原因| 巴沙鱼是什么鱼| 小便清长是什么意思| 缺维生素d吃什么| 胃酸是什么颜色| 肝郁化火是什么意思| 再生纤维素纤维是什么面料| 激光脱毛对人体有没有什么危害| 什么人不宜喝咖啡| 什么情况下月经推迟| 冒是什么意思| 胎儿缺氧孕妇会有什么反应| 剔除是什么意思| 梦见亲嘴是什么意思| pd是什么病| 什么情况下怀疑白血病| 5月3号是什么星座| ffa是什么意思| 脖子粗大是什么病的症状| 骨密度是检查什么的| 百度Jump to content

春分 千花百卉争明媚,莫负好春光

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by SdkbBot (talk | contribs) at 20:04, 23 June 2021 (General fixes, removed erroneous space). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
百度 但是他扩张相权的种种策略,却为以后的相权开启了方便之门。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four.

where the four numbers are integers. For illustration, 3, 31 and 310 can be represented as the sum of four squares as follows:

Know that 310 can also be represented as the sum of these four squares: ??, as well as ??.

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[1]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[2]

The classical proof

Several very similar modern versions[3][4][5] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[6] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

One of the ways to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[7] The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula

where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number

where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Langrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that

and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[7] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have

so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[8] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[9])

Algorithms

Michael O. Rabin and Jeffrey Shallit[10] have found randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time .

Number of representations

The number of representations of a natural number n as the sum of four squares is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as

where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[11]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[11]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[12] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal n can be written as a sum of at most 4 elements of S.[13]

See also

Notes

  1. ^ Ireland & Rosen 1990.
  2. ^ Sarnak 2013.
  3. ^ Landau 1958, Theorems 166 to 169.
  4. ^ Hardy & Wright 2008, Theorem 369.
  5. ^ Niven & Zuckerman 1960, paragraph 5.7.
  6. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  7. ^ a b Stillwell 2003, pp. 138–157.
  8. ^ Ramanujan 1917.
  9. ^ Oh 2000.
  10. ^ Rabin & Shallit 1986.
  11. ^ a b Williams 2011, p. 119.
  12. ^ Z.-W. Sun 2017.
  13. ^ Spencer 1996.

References

  • Hardy, G. H.; Wright, E. M. (2008) [1938]. Heath-Brown, D. R.; Silverman, J. H.; Wiles, Andrew (eds.). An Introduction to the Theory of Numbers (6th ed.). Oxford University Press. ISBN 978-0-19-921985-8.
  • Ireland, Kenneth; Rosen, Michael (1990). A Classical Introduction to Modern Number Theory (2nd ed.). Springer. doi:10.1007/978-1-4757-2103-4. ISBN 978-1-4419-3094-1.
  • Landau, Edmund (1958) [1927]. Elementary Number Theory. Vol. 125. Translated by Goodman, Jacob E. (2nd ed.). AMS Chelsea Publishing.
  • Niven, Ivan; Zuckerman, Herbert S. (1960). An introduction to the theory of numbers. Wiley.
  • Oh, Byeong-Kweon (2000). "Representations of Binary Forms by Quinary Quadratic Forms" (PDF). Trends in Mathematics. 3 (1): 102–107.
  • Rabin, M. O.; Shallit, J. O. (1986). "Randomized Algorithms in Number Theory". Communications on Pure and Applied Mathematics. 39 (S1): S239 – S256. doi:10.1002/cpa.3160390713.
  • Ramanujan, S. (1917). "On the expression of a number in the form ax2 + by2 + cz2 + dw2". Proc. Camb. Phil. Soc. 19: 11–21.
  • Sarnak, Peter (2013). "The Ramanujan Conjecture and some Diophantine Equations" (Lecture at Tata Institute of Fundamental Research). ICTS Lecture Series. Bangalore, India.
  • Stillwell, John (2003). Elements of Number Theory. Undergraduate Texts in Mathematics. Springer. doi:10.1007/978-0-387-21735-2. ISBN 978-0-387-95587-2. Zbl 1112.11002.
  • Sun, Z.-W. (2017). "Refining Lagrange's four-square theorem". J. Number Theory. 175: 167–190. arXiv:1604.06723. doi:10.1016/j.jnt.2016.11.008. S2CID 119597024.
  • Williams, Kenneth S. (2011). Number theory in the spirit of Liouville. London Mathematical Society Student Texts. Vol. 76. Cambridge University Press. ISBN 978-0-521-17562-3. Zbl 1227.11002.
  • Spencer, Joel (1996). "Four Squares with Few Squares". Number Theory: New York Seminar 1991–1995. Springer US. pp. 295–297. doi:10.1007/978-1-4612-2418-1_22. ISBN 9780387948263.
脘腹胀满是什么意思 葫芦的寓意是什么 金字旁加女念什么字 蛇毒有什么用 月经期后是什么期
输血前四项检查是什么 胸一大一小什么原因 MS医学上是什么意思 内膜薄吃什么补得最快 结婚13年是什么婚
寒气和湿气有什么区别 婴儿蓝是什么颜色 月经量多是什么原因导致的 两眼中间的位置叫什么 驴友是什么意思
24度穿什么衣服合适 狼毒是什么 易举易泄是什么原因 腻歪什么意思 腿困是什么原因引起的
非经期少量出血是什么原因hcv9jop8ns0r.cn 下巴底下长痘痘是什么原因hcv9jop5ns3r.cn 值机是什么shenchushe.com 6.19什么星座hcv8jop2ns7r.cn 南瓜不能和什么同吃xjhesheng.com
分泌物豆腐渣状是什么原因hcv8jop4ns4r.cn 小狗什么时候换牙hcv7jop6ns3r.cn 音序是什么意思hcv8jop5ns8r.cn 胆囊切除后对身体有什么影响hcv8jop3ns5r.cn 衣服发黄是什么原因hcv8jop3ns8r.cn
什么时间容易怀孕hcv9jop2ns7r.cn 大学毕业送什么花hcv8jop9ns9r.cn oba是什么意思hcv9jop3ns1r.cn 希特勒为什么杀犹太人hcv8jop8ns3r.cn 阴湿是什么病hcv8jop9ns3r.cn
苏武牧羊是什么意思jinxinzhichuang.com 水彩笔用什么能洗掉hcv8jop9ns5r.cn 放疗是什么意思hcv9jop2ns4r.cn 天妇罗是什么意思sscsqa.com 经常咳嗽是什么原因hcv9jop4ns9r.cn
百度