槟榔长什么样| 坐月子可以吃什么蔬菜| 睡觉就做梦是什么原因| 硬汉是什么意思| 感冒吃什么水果好| 偏头疼吃什么药效果好| 人黑穿什么颜色的衣服好看| 势利眼的人有什么特征| 肌红蛋白高是什么原因| 世五行属什么| 觊觎是什么意思| 吃小龙虾不能和什么一起吃| ood是什么意思| 肌张力障碍是什么病| 辛属什么五行| 财神在什么方位| 干白是什么酒| 强是什么生肖| 泡什么喝可以降血糖| hm什么牌子| rosa是什么意思| 尿毒清颗粒主治什么病| 神经节是什么| 淋巴细胞百分比偏低是什么原因| 什么是黑天鹅事件| 时迁是什么意思| 外阴瘙痒什么原因引起| 刷牙时牙酸是什么原因| 请教意思是什么| 林子祥属什么生肖| 熤是什么意思| 全身冰凉是什么原因| 01年属什么| 什么时候闰正月| 狗能吃巧克力吗为什么| 经期喝茶有什么影响| 脑梗什么意思| 有什么症状是肯定没怀孕| 花荣的绰号是什么| 愚痴是什么意思| 阿胶的原料是什么| rich什么意思| pouch什么意思| 激素药是什么意思| 孕期什么时候补铁| 农历六月十一是什么星座| 为什么想到一个人会心痛| 肝异常一般是什么情况| 肺寒咳嗽吃什么药| 什么是肋骨骨折| 2020年是什么年| 87年兔是什么命| 什么时间艾灸效果最好| 忘年恋是什么意思| 月经快来了有什么征兆| 活珠子是什么| 切诺是什么药| 吃什么减肥瘦肚子| 算了是什么意思| 皮肤癣用什么药| 血瘀是什么原因造成的| 什么心所什么| 唏嘘不已的意思是什么| 澳门回归是什么时候| 是什么意思啊| 烁字五行属什么| 1104是什么星座| 过敏输液输什么药好| 吃环孢素有什么副作用| 跳票什么意思| 梦见钱包丢了是什么意思| 一边脸大一边脸小是什么原因| 效果图是什么意思| 装修都包括什么| 大便每天四五次是什么病| 失败是成功之母是什么意思| 滴虫性阴炎用什么药效果最好| 牡丹象征着什么意义| 虎头蛇尾是什么意思| 鹰和隼有什么区别| 赛能是什么药| 不知道叫什么名字好| 女人的逼是什么意思| 一边什么一边什么| 土中金是什么数字| 什么颜色最显白| 猪鞭是什么| 中水是什么意思| 流产是什么症状| 促销是什么意思| 长春都有什么大学| 为什么家里会有蚂蚁| 枸杞泡水喝有什么好处| 放生乌龟有什么寓意| 财位在什么方位| 剑客是什么意思| 支原体感染吃什么食物好| skr什么意思| 小孩睡觉打呼噜是什么原因| 喝白茶有什么好处| 受精卵着床有什么反应| 狗又吐又拉稀吃什么药| 嗣是什么意思| 凤凰单丛茶属于什么茶| 标王是什么意思| 白加黑是什么颜色| 手脚麻是什么原因| 眼睛里有红血丝是什么原因| 什么药可以延长性功能| 十一月九号是什么星座| 人为什么会自杀| 约炮是什么意思| 甲方是什么意思| 看阴茎挂什么科| 哺乳期妈妈感冒了可以吃什么药| 身份证拍照穿什么衣服| 阳痿什么意思| 什么是童子命| 男才女貌是什么意思| 为什么拉的屎是墨绿色| 爬山虎是什么茎| 陈皮泡水喝有什么功效和作用| 冠状动脉肌桥是什么病| 考法医需要什么条件| 6月26号是什么星座| 前列腺炎需要做什么检查| 高硼硅玻璃是什么材质| 梅干菜是什么菜做的| 呼呼是什么意思| 喉咙发甜是什么原因| 腿部抽筋是什么原因引起的| 什么是庞氏骗局| 恒牙是什么牙| 半边脸肿是什么原因引起的| vsop是什么意思| 阴道发臭是什么原因| 生僻字是什么意思| 胃痉挛吃什么药好| 教是什么生肖| 眼花是什么原因| 手工diy是什么意思| 尿酸高吃什么好| 93岁属什么生肖| 鬼冢虎属于什么档次| 胆气虚吃什么中成药| 警察是什么生肖| 参谋是什么军衔| 油漆味对人有什么危害| 来月经胸胀痛什么原因| 油碟是什么| 木是什么颜色| 苦瓜有什么好处| c反应蛋白是什么| 鼓风机是干什么用的| 畸胎瘤是什么病严重吗| 小孩子上火吃什么能降火| 上午九点到十一点是什么时辰| 车水马龙什么意思| 肉馅可以做什么美食| 脊柱疼是什么原因| 涉黑是什么意思| 慎重考虑是什么意思| hospital是什么意思| 乳粉是什么| 杀鸡吓什么| 男性疝气是什么病| 酵母菌属于什么菌| 什么的小学生| 做什么生意好挣钱| 吃什么对肠道好| 男人肾虚吃什么最补| 尿粒细胞酯酶阳性什么意思| 吃什么水果补肝养肝最有效| 私处长痘痘是什么原因| 胃不好吃什么好消化又有营养| 男性内分泌失调有什么症状| 窦缓是什么意思| 1223是什么星座| 一蹴而就什么意思| 背靠背什么意思| 30年的婚姻是什么婚| 龟苓膏有什么功效| 卯时属什么| 长期缺铁性贫血会导致什么后果| 脖子上长小肉疙瘩是什么原因| 鸡飞狗跳的意思是什么| 理想主义是什么意思| 曲安奈德是什么药| 弓山文念什么| 车前草有什么功效| 什么茶可以减肥消脂| 霸王别姬讲的是什么故事| 长期便秘吃什么药效果最好| 阴虚内热吃什么药好| 想什么| 五步蛇为什么叫五步蛇| 泰安有什么大学| 龟头炎是什么症状| 身份证上x代表什么| 自来鸟是什么兆头| 正月十八是什么日子| 开小灶是什么意思| 勃艮第红是什么颜色| 乳腺结节有什么症状| 吸烟有什么危害| 血糖高了会有什么危害| 草泥马是什么| 唇炎去药店买什么药| 中毒了吃什么解毒| 五劳七伤什么生肖| 1936年是什么年| 电头是什么| rn是什么意思| 肺腺瘤是什么| 女生抽什么烟合适| 喉咙有异物感吃什么药| 孕妇什么时候有奶水| cn是什么意思啊| 猫眼石是什么材质| 继承衣钵是什么意思| 辩证思维是什么意思| 荔枝对身体有什么好处| 睡醒口干口苦是什么原因| 芒种是什么意思| 玄牝是什么意思| 什么叫智齿牙| 为什么来姨妈左侧输卵管会痛| 云字属于五行属什么| 巧克力囊肿有什么症状表现| 冷面是什么面做的| 七月十五有什么忌讳| noah是什么牌子| 单元剧是什么意思| 小鸡仔吃什么| 富贵包挂什么科| 性功能减退吃什么药| 什么头什么面| 西柚是什么水果| 梦见捉蛇是什么意思| 肺大泡是什么| 尿酸高吃什么中药能降下来| 痔疮什么样| 拔罐紫色说明什么| 吃什么补黄体酮| 嘉庆叫什么名字| 医院康复科是干什么的| 常喝黑苦荞茶有什么好处| 骨折吃什么好| 成人达己是什么意思| 太平果是什么水果| 小蜗牛吃什么| 维酶素片搭配什么药治萎缩性胃炎| 秦朝灭亡后是什么朝代| 上尉军衔是什么级别| 十玉九裂是什么意思| 高中学考是什么意思| 豌豆什么时候种最好| 农历六月初七是什么星座| 胃大是什么原因造成的| 守宫是什么动物| 男性感染支原体有什么症状| 米粉和米线有什么区别| 赵本山是什么学历| 一阵一阵的胃疼是什么原因| 百度Jump to content

新城区上门服务重点项目,扎实做好招商扶商工作

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 2a02:c7c:52a7:3500:2c80:e3e7:dda:5f7d (talk) at 18:47, 8 March 2023. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
百度 回头是岸是什么生肖

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1917.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Z.-W. Sun 2017.
  15. ^ Spencer 1996.

References

无垢是什么意思 生理期肚子疼吃什么药 吃什么可以抗衰老 什么的枫树 剑突下是什么位置
右小指麻木是什么征兆 寂寞什么意思 知了猴什么时候出土 肝实质回声密集是什么意思 骨质增生什么意思
杂面是什么面 感冒吃什么饭菜比较好 为什么会低血糖 梦见出国了是什么意思 儿童乐园有什么好玩的
胃病喝什么茶养胃 共产主义社会是什么样的社会 肌肤甲错是什么意思 吃什么胎儿眼睛黑又亮 人生格言是什么
晟这个字读什么fenrenren.com 心慌应该挂什么科hcv8jop3ns9r.cn 小腿浮肿吃什么药最好hcv7jop5ns2r.cn 四大菩萨分别保佑什么hcv8jop8ns1r.cn 佛法无边是什么意思hcv7jop5ns5r.cn
大基数是什么意思hcv8jop2ns5r.cn 淋巴发炎吃什么药好qingzhougame.com 陆代表什么数字hcv7jop9ns0r.cn soeasy是什么意思hcv8jop0ns0r.cn 五液是指什么hcv8jop9ns7r.cn
小孩口腔溃疡是什么原因引起的hcv8jop8ns2r.cn 69年属什么生肖hcv8jop0ns3r.cn 发泡实验是检查什么的jasonfriends.com 口腔溃疡什么症状hcv8jop3ns2r.cn 罗汉果有什么功效和作用sscsqa.com
咳血是什么原因chuanglingweilai.com 排便困难是什么原因hcv8jop6ns1r.cn 血压高是什么原因hcv9jop4ns3r.cn 经常勃起是什么原因hcv8jop7ns1r.cn 粉蒸肉用什么肉好吃hcv9jop5ns5r.cn
百度