10015是什么电话| 警察为什么叫蜀黍| 肾脏挂什么科| 肾结石吃什么| 晋字五行属什么| 你在纠结什么| 中核集团是什么级别| 吃什么东西可以降压| 左侧卵巢囊性结构什么意思| 壶承是什么| 火气重吃什么降火| 什么是试管婴儿| 清茶是什么茶| 十一月五号是什么星座| 动容什么意思| 眼压高有什么症状和危害| 猪拉稀用什么药最快| 樱桃跟车厘子有什么区别| 6什么意思| 什么室什么空| 一什么荷花| 薄荷泡水喝有什么好处| 处暑吃什么传统食物| 性质是什么| 前列腺增生是什么原因引起的| 出现血精吃什么药| 束缚的意思是什么| 夏天受凉感冒吃什么药| 后背出汗多是什么原因| 腱鞘炎什么症状| 左胳膊发麻是什么原因| 百香果不能和什么一起吃| 护理专业是做什么的| a1代表什么意思| 兰陵为什么改名枣庄| 北京生源是什么意思| 全麻对身体有什么影响| 报复是什么意思| sharon是什么意思| 十年大运是什么意思| 思诺思是什么药| 抗核抗体是什么意思| 男生为什么要割包皮| 丛生是什么意思| 榴莲什么时候吃是应季| 儿童呕吐吃什么药| psv医学是什么意思| 残留是什么意思| 凝血四项是检查什么的| 金牛座是什么象| 抽脂有什么风险和后遗症| 吃西瓜不能吃什么| 为什么手上会起小水泡| 男性粘液丝高什么原因| 中元节是什么时候| 请婚假需要什么材料| 女性出汗多是什么原因| 生旦净末丑分别指什么| 身上发冷是什么原因| 陈宝国的儿子叫什么| 边鱼是什么鱼| 痛经什么感觉| 八零年属什么生肖| 棋字五行属什么| 踩水是什么意思| 餐饮sop是什么意思| 尿微量白蛋白高是什么原因| 刷牙牙龈出血是什么原因| 吃什么食物补肾最快| 白带多要吃什么药| 类风湿因子高是什么原因| 头顶长白头发是什么原因造成的| 术后改变是什么意思| 白色的鱼是什么鱼| 托帕石是什么| 澳大利亚属于什么洲| 经常饿是什么原因| 嘴巴苦是什么原因引起的| 大学什么时候开始收费| 头痛是什么原因造成的| 渗透率是什么意思| 碳素墨水用什么能洗掉| 什么是血脂| 什么什么斑斓| 肚子胀气吃什么药好| 喝酒前喝什么不容易醉| 秋葵有什么营养| 上腹胀是什么原因| 三个箭头朝下是什么牌子| 挖空细胞是什么意思啊| 眼睛很多眼屎是什么原因| 4月2号什么星座| 鹌鹑蛋不能和什么一起吃| 弱肉强食什么意思| 一竖读什么| 衣食无忧是什么生肖| 什么是k金| 岚的意思是什么| 羊鞭是什么部位| 阳历8月份是什么星座| 小孩晚上睡觉发梦癫什么原因| 子宫有问题有什么症状| 产后42天复查都检查什么| 梦见赢钱了是什么预兆| 不为良相便为良医是什么意思| 梦见车丢了是什么征兆| 舌苔白厚腻吃什么药| 胃糜烂吃什么药可以根治| 宗人府是干什么的| 什么是活检检查| 喝什么水对身体好| 1984年属什么生肖| 矢量图是什么格式| 小孩咳嗽挂什么科| 腿胖是什么原因引起的| 裙裤配什么鞋子好看| 神经衰弱吃什么药| 生加一笔是什么字| 楚门的世界是什么意思| 什么是小暑| 氯吡格雷治什么病| rt是什么意思| 悸是什么意思| 心肌病是什么病严重吗| 传教士是什么意思| 洗纹身去医院挂什么科| 天珠是什么材质| 黄芪搭配什么不上火| 木耳和什么不能一起吃| 阴囊上长了几根白毛是什么原因| 什么颜色的包包招财并聚财| 姝是什么意思| 精力旺盛是什么意思| 妇科假丝酵母菌是什么病| 嗓子疼低烧吃什么药| 慰藉是什么意思| 偏光镜是什么意思| 为什么会咳嗽| 反胃想吐吃什么药| 三加一是什么意思| 什么药可以止血| 雪碧喝多了有什么害处| 狗为什么吃屎| 乞丐是什么生肖| 狗狗什么时候打疫苗| 什么叫切片| 长绒棉和全棉什么区别| coach什么意思| 西柚是什么季节的水果| 阿昔洛韦是什么药| 桃子可以做什么美食| 浪迹天涯是什么生肖| 嵌甲去医院挂什么科| 宝路华手表什么档次| 孕妇做糖筛是检查什么| 飞行员妻子有什么待遇| m什么意思| 世界第一长河是什么河| 什么的态度| 身上没长什么就是干痒| 风疟病是什么意思| 念珠菌感染用什么药| 善字五行属什么| 还记得年少时的梦吗是什么歌| 焦虑症用什么药好| 积气是什么意思| 出车前检查的目的是什么| 参透是什么意思| 牛油果有什么功效| 上海仁济医院擅长什么| 做腹腔镜手术后需要注意什么| 紫水晶五行属什么| 凌晨的凌是什么意思| 前胸后背疼是什么原因| 梦到老公被蛇咬是什么意思| 生理盐水敷脸有什么作用| 钻石王老五是什么意思| 灰指甲有什么症状| 草莓印是什么意思| 布洛芬吃多了有什么后果| 来曲唑片什么时候吃最好| 什么花走着开| 眉茶属于什么茶| 为什么会起湿疹| 肝肿瘤吃什么食物好| 地奥司明片治疗什么病| apc是什么| 银屑病是什么症状| hp代表什么意思| 什么人容易得心理疾病| 为什么大便是绿色的| 大眼角痒用什么眼药水| 王玉读什么| 黄皮什么时候成熟| 维民所止什么意思| 沸石为什么能防止暴沸| 做爱为什么那么舒服| 甲状腺适合吃什么食物| 令是什么生肖| 咀嚼食用是什么意思| 枸杞和山楂泡水喝有什么功效| 2012年是什么命| b2c什么意思| 喝莓茶有什么好处| 肚子上方中间疼是什么部位| 孕早期失眠是什么原因| bella是什么意思| 增生性贫血是什么意思| ox什么意思| 志愿号是什么意思| 袁崇焕为什么被杀| 宁静是什么民族| 甜菜什么意思| 八一建军节是什么节日| 美业是什么| bioisland是什么牌子| 睡觉憋气是什么原因引起的| 鸟大了什么林子都有| 毒龙是什么意思啊| 90年属什么的生肖| 清白是什么意思| 睡觉流鼻血是什么原因| 属猴和什么属相相克| 脾虚不能吃什么| 身体起水泡是什么病症| live什么意思| 血氧低吃什么提高的快| 小猫不能吃什么食物| 军五行属什么| 豌豆有什么营养价值| 上火吃什么药| 五光十色是什么意思| 金木水火土各代表什么| 过问是什么意思| 什么样的大便是正常的| 肌红蛋白低说明什么| 十年是什么婚| 怀孕初期分泌物是什么样的| 申字五行属什么| 拉肚子低烧是什么原因| 身主天机是什么意思| 吃什么可以消除淋巴结| bys是什么药| 鸡心为什么不建议吃| 电荷是什么| 胜肽的主要功能是什么| 怀女儿有什么症状| 嗓子疼喝什么茶最有效| 胃炎吃什么药效果好| 冠脉ct能检查出什么| 肺炎吃什么药效果好| 周二右眼皮跳是什么预兆| 农历六月初七是什么星座| 两岁宝宝拉肚子吃什么药| 尿毒症有些什么症状| 医院面试一般会问什么| 仓鼠不能吃什么| 人皇是什么意思| 想吃辣椒身体里缺什么| 过期橄榄油有什么用途| au9999是什么意思| 钾高吃什么可以降下来| 11月30号是什么星座| 什么辉煌四字词语| 百度Jump to content

长春市环卫系统开展雨中除尘作业清洗76条主次街路

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Logicdavid (talk | contribs) at 22:29, 22 September 2023 (inserted "squares of integers", since the bulk of the article is about squares of positive integers, and so if one doesn't read every line of the article, at this point, one will be confused.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem states that the analogue in four dimensions yields square roots of every natural number
百度 的小伙伴们看过来~近日,“东沟配套商品房A-4地块安置房项目”项目工程设计方案正在规土局网站公示,快来看看吧↓项目详情基地面积:㎡总建筑面积:㎡容积率:绿地率:%建筑密度:%建筑高度:不大于42m建设内容地上建筑包括10幢14层高层住宅以及社区配套等地下部分主要功能为地下非机动车库、住宅地下室、地下机动车库、配套地下室等四个部分公示详情公示期限:2018年3月20日至2018年4月1日反馈意见截止日期:自公示结束后七日,信件以寄出邮戳为准。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares of integers is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1917.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Z.-W. Sun 2017.
  15. ^ Spencer 1996.

References

困是什么意思 肝脏在什么位置 20是什么意思 面部痒是什么原因 什么假什么威
2023是什么年 非萎缩性胃炎伴糜烂是什么意思 三点水一个前读什么 脸上老长痘痘是什么原因 肉字五行属什么
70年属什么 果代表什么生肖 肺肿物是什么意思 为什么会有子宫肌瘤 手麻是什么原因引起的
皮肤黑适合什么颜色的衣服 鼻炎有什么症状 失能是什么意思 长期喝蜂蜜有什么好处 三顾茅庐什么意思
山竹有什么好处hcv9jop0ns3r.cn 什么原因引起尿路感染youbangsi.com 吉兰巴雷综合征是什么病hcv7jop6ns0r.cn 潆是什么意思hcv8jop4ns6r.cn 826是什么星座hcv7jop5ns3r.cn
你把我当什么hcv8jop9ns4r.cn 胶囊壳是什么原料做的hcv9jop1ns8r.cn 行李为什么叫行李hcv8jop7ns5r.cn snr是什么意思hcv9jop5ns9r.cn 尿常规隐血弱阳性什么意思hcv9jop4ns7r.cn
下午3点到5点是什么时辰bjcbxg.com 什么东西解腻hcv8jop9ns9r.cn 外阴瘙痒什么原因引起hcv8jop1ns1r.cn 一听是什么意思hcv9jop3ns3r.cn 鸟为什么会飞huizhijixie.com
核磁共振跟ct有什么区别hcv9jop5ns7r.cn 肛门镜检查能查出什么hcv8jop0ns3r.cn 只出不进什么意思chuanglingweilai.com 手掌心痒是什么原因beikeqingting.com 大耗是什么意思hcv9jop4ns0r.cn
百度