一什么而入| 什么叫钙化| 乘的部首是什么| 什么水果可以美白| 红色加紫色是什么颜色| 2018年属什么| 甲虫吃什么食物| 膛目结舌是什么意思| 什么原因引起痛风| 榴莲为什么那么贵| 95511是什么号码| 月经期间吃西瓜有什么影响| 治疗梅毒用什么药最好| 浑身疼痛什么原因| 树大招风的意思是什么| 低烧是什么病的前兆| 寻麻疹是什么症状| 女人银屑病一般都长什么地方| 愿闻其详是什么意思| 合寿木是什么意思| 家里起火代表什么预兆| 什么是假性近视眼| 西夏是现在的什么地方| 什么心什么意| 纹绣是什么| 阿胶适合什么人吃| 什么东东| 乳头疼是什么原因| 五代十国是什么意思| 为什么体检前不能喝水| 梦见自己牙齿掉光了是什么征兆| 幼小衔接是什么意思| 甘耳朵旁什么字| 腱鞘炎贴什么膏药| 腺瘤型息肉是什么意思| 狗感冒吃什么药| 太阳穴长痘痘什么原因| 少年郎是什么意思| other是什么品牌| 安排是什么意思| 鸡翅木是什么木| 本能是什么意思| 梦见自己请客吃饭是什么意思| 基因检测是什么| 羊水穿刺主要检查什么| 明年属什么| 巴马汤泡脚有什么功效| 血糖高适合喝什么酒| 杜甫自号什么| 糟卤是什么| 小肺大泡是什么意思| 玉婷是什么| 湿疹是什么意思| generic是什么意思| 什么情况下吃奥司他韦| 骨钙素是什么| 加盟资质需要什么条件| 赤潮是什么| 发膜什么牌子效果最好| 正方形的纸能折什么| 不倒翁是什么意思| 嘴唇发紫什么原因| 愚不可及是什么意思| 大葱和小葱有什么区别| 皮牙子是什么意思| 书店里买不到什么书| 小孩眼屎多是什么原因引起的| 芒果什么人不适合吃| lz什么意思| 和尚代表什么生肖| 垂体泌乳素是什么意思| 早泄吃什么补| 六月中旬是什么时候| 四平八稳是什么生肖| 鸡胸是什么原因引起的| 神灵是什么意思| 中的五行属性是什么| bv是什么牌子| 什么东西补气血效果最好| 小便短赤是什么意思| coco什么意思| maby什么意思| get什么意思| 句号代表什么意思| 口腔检查挂什么科| 葡萄糖粉适合什么人喝| 刑冲破害是什么意思| 一什么池塘| 1月26号是什么星座| 月可以加什么偏旁| 堂哥的女儿叫什么| 挂靠是什么意思| 银针白毫是什么茶| 哈密瓜是什么季节的水果| 4月2号什么星座| 菜心是什么菜的心| 萨德是什么意思| 感冒为什么会鼻塞| 全身抽筋吃什么药| 小狗感冒症状是什么样的| 军长相当于地方什么官| 造影检查对身体有什么伤害| 金字旁加匀念什么| 木石念什么| 西游记有什么故事| 笑靥如花什么意思| 无印良品属于什么档次| 阿莫西林有什么副作用| c6是什么| 印度洋为什么叫印度洋| 什么叫滑精| 恩赐是什么意思| 查激素六项挂什么科| 太阳光是什么颜色| 半夜十二点是什么时辰| 什么的大象| 黑马比喻什么样的人| 97年五行属什么| 甘油三酯低有什么危害| 小猫咪能吃什么| 姝是什么意思| 大便白色是什么原因| 金银花什么时候采摘最好| 肛门看什么科| 生姜有什么功效| 表面抗原阳性是什么意思| 血晕症是什么病| 什么花是蓝色的| 吃什么白头发变黑| 花园里面有什么| 金鱼吃什么食物| 免疫抑制剂是什么意思| pcv是什么意思| 月经量多吃什么药| 荔枝长什么样| 化痰止咳吃什么药最好| 血糖高什么症状| 小鸡啄米什么意思| 什么是海市蜃楼| 榄仁是什么| 直博生是什么意思| 阁楼是什么意思| 心率过快是什么原因| 男性染色体是什么| 上火吃什么消炎药| 糟卤可以做什么菜| mri是什么意思| 什么叫生理盐水| 茯苓什么人不能吃| 树懒是什么动物| 为什么放屁特别臭| 亚麻籽有什么功效| 飞机加什么油| 矿泉水敷脸有什么作用| 四面受敌是什么动物| 什么叫孝顺| 如意是什么意思| 尿里有潜血是什么原因| 男人头发硬说明什么| 金克木是什么意思| 5月4日是什么星座| 脚趾第二个比第一个长有什么说法| 例假是什么| 什么高什么低| 蓄谋已久什么意思| 甲功七项挂什么科| 米西米西什么意思| 脾胃气虚吃什么药| 什么名字好听男生| 脂肪肝挂什么科| 多囊卵巢有什么症状表现| 90年是什么年| 看幽门螺旋杆菌挂什么科| 什么的公鸡| 做胃镜挂什么科| 福瑞祥和是什么意思| 小土豆是什么意思| 画作是什么意思| 为什么一来月经就拉肚子| 今年为什么这么热| 小肚鸡肠是什么意思| 腹水是什么| 干扰素是治什么病的| 退烧吃什么药| 什么样的脸型有福| gigi 是什么意思| 甲功五项是什么意思| 番茄和蕃茄有什么区别| choker什么意思| 木棉是什么面料| 胃镜活检是什么意思| 榻榻米床垫什么材质的好| 肺结核传染途径是什么| 昵称是什么| superman什么意思| 来月经胸胀痛什么原因| 人格是什么| 智齿为什么会发炎| 痛经喝什么| 脑梗有什么症状| 子宫瘢痕憩室是什么病| 614是什么星座| 成吉思汗什么意思| 七年之痒什么意思| 西洋参和人参有什么区别| 梦见和亲人吵架是什么意思| 沈阳是什么省| 拉k是什么意思| 结膜炎什么症状| 逝者已矣生者如斯是什么意思| 封闭抗体是什么意思| 睡觉开风扇有什么危害| 面诊是什么意思| 打嗝不停是什么原因| 早上口苦是什么原因| e代表什么数字| 茶走是什么意思| 同房时阴道疼痛是什么原因| fans是什么意思| esr是什么意思| johnny什么意思| 女人眉毛稀少代表什么| 无缘无故吐血是什么原因| 什么是脑梗塞| 眼睛散光是什么意思| 心内科是看什么病的| 皮肤长斑是什么原因引起的| 血沉50说明什么原因| 9月13日是什么日子| 肺气不足吃什么中成药| 辛辣都包括什么| 什么样的伤口需要打破伤风| 开水烫伤用什么药膏好得快| 52年属什么生肖| 什么是行政处罚| 芒果过敏用什么药| 么么叽是什么意思| 人死后为什么要守夜| 俄罗斯乌克兰为什么打仗| 忽冷忽热是什么症状| 女生什么时候最容易怀孕| 孕妇晚餐吃什么比较好| 嗪读什么| 猪蛋是什么| 肾阴虚吃什么食物补| 玫瑰红是什么颜色| 脚掌心发热是什么原因| 胃疼想吐是什么原因| 什么桥下没有水| 胃反酸吃什么药| 走后门什么意思| 哎是什么意思| 胃烧心是什么原因| 海拔是什么| 过是什么结构的字| opo是什么| 婴儿什么时候吃辅食| 开胸手术吃什么补元气| 夏天肚子疼是什么原因| 百日咳是什么| 女人手心脚心发热是什么原因| 什么而去的四字词语| 什么是亲情| 吃白饭是什么意思| 百度Jump to content

Хань Чжэн Китай полон уверенности в высококачественном развитии экономики

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 2601:204:f181:9410:3c65:ab2c:3afd:5db4 (talk) at 18:59, 25 June 2024 (Further refinements). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem states that the analogue in four dimensions yields square roots of every natural number
百度 生态文明建设是全社会共同参与、共同建设、共同享有的崇高事业,需要全社会共同努力。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares of integers is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares of non-negative integers (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal to n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1917.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Sun 2017.
  15. ^ Spencer 1996.

References

婴儿什么时候会走路 门静脉高压是什么意思 庶母是什么意思 腿血栓什么症状 25度穿什么衣服
什么树叶 6月20号什么星座 漂脱是什么意思 入睡困难吃什么中成药 什么食物降血糖
你想什么 痹病是什么意思 右眼睛跳是什么意思 吃羊肉不能和什么一起吃 补位是什么意思
寂寞什么意思 梦见蛇缠身是什么预兆 pco是什么意思 香蕉和什么一起吃能减肥 肝转氨酶高有什么危害
菠菜为什么要焯水hcv8jop5ns3r.cn kitty什么意思hcv8jop9ns0r.cn goldlion是什么牌子hcv9jop7ns9r.cn 传教士是什么姿势hcv9jop1ns0r.cn 左心增大是什么意思hcv9jop5ns0r.cn
磷是什么元素cj623037.com 乌鸦飞进家里什么征兆hcv8jop8ns4r.cn 烧心是什么症状hcv7jop6ns8r.cn 籺是什么意思hcv9jop0ns4r.cn 女人安全期是什么时候hcv9jop2ns6r.cn
一柱擎天什么意思hcv9jop6ns8r.cn 平和是什么意思hcv9jop1ns2r.cn 彩超无回声是什么意思520myf.com 荣五行属什么ff14chat.com 周瑜为什么打黄盖hcv9jop5ns1r.cn
在五行中属什么hcv9jop4ns9r.cn 新生儿痤疮是什么引起的wmyky.com 低脂牛奶适合什么人喝hcv8jop4ns2r.cn 做梦梦见水是什么意思hcv9jop3ns1r.cn 琳琅是什么意思hcv7jop9ns6r.cn
百度