西太后手表什么档次| 正常人吃叶酸有什么好处| 为什么有白带| 开水烫了用什么紧急处理| 爱钻牛角尖是什么意思| 疤痕痒是什么原因| 酸梅汤不能和什么一起吃| 美的不可方物是什么意思| 奔豚是什么意思| 小孩呕吐是什么原因引起的| 女生为什么会长胡子| 糖耐是检查什么| 哎呀是什么意思| mint什么颜色| 什么一什么什么成语| 坐月子什么不能吃| 一什么荷叶| 衣服为什么会发霉| 手脚发麻什么原因| 鸭肉和什么一起炖好吃| 秉承是什么意思| 巡礼是什么意思| 七月二十四是什么星座| 脾虚是什么症状| 杆鱼是什么鱼| 检查肾挂什么科| mh是什么单位| lr是什么意思| 胃胀不消化吃什么药好| 内膜厚吃什么掉内膜| 外科主要看什么病| 恶性循环是什么意思| 为什么会尿床| 谁发明了什么| 高碱性食物都有什么| 什么样的女人招人嫉妒| 多吃木耳有什么好处和坏处| npv是什么病毒| 什么时候情人节| 梦到下雨是什么意思| 75属什么生肖| 扁桃体发炎能吃什么水果| 不完全骨折是什么意思| 小孩经常流鼻血是什么原因| 吞拿鱼是什么鱼| 多吃西瓜有什么好处| 人长寿的秘诀是什么| 猫为什么吃老鼠| 氧化钙是什么| 低压偏高是什么原因| 胃上面是什么器官| 骨强度不足是什么原因| 什么叫痔疮| 高凝状态是什么意思| viki什么意思| 生是什么生肖| 纸可以折什么| 尿液特别黄是什么原因引起的| 文竹的寓意是什么| 生理期为什么不能拔牙| 10月11是什么星座| 夏天有什么花| 李世民字什么| 鼻干眼干口干属于什么症状| 今年什么时候入梅| 花蛤不能和什么一起吃| 瓜田李下什么意思| 每天吃一个西红柿有什么好处| 高血糖吃什么菜好| 食管反流用什么药效果好| 生理期为什么会腰疼| 酸碱度偏高是什么意思| 病理检查是什么意思| 孩子吐了吃什么药| 英文为什么怎么写| 什么是杀青| g6pd是检查什么的| 酸菜鱼放什么配菜好吃| 凝血常规是查什么的| 11月份是什么季节| 类风湿是什么原因引起的| 神龛是什么意思| 益安宁丸主治什么病| 什么是bp| 福建为什么叫八闽| 出水芙蓉是什么意思| 厚植是什么意思| 低密度灶是什么意思| 财迷是什么意思| 梦见做鞋子是什么意思| 高血脂吃什么药| 女汉子什么意思| 药品gmp是什么意思| 川崎病是什么症状| sinoer是什么牌子| 四百多分能上什么大学| 总钙偏高是什么原因| 广义是什么意思| 肝硬化早期有什么症状| 冬天怕冷夏天怕热是什么体质| 丛林法则是什么意思| 牙疼不能吃什么东西| 早期流产是什么症状| 嘴唇是紫色的是什么原因| crn什么意思| 贴秋膘是什么意思啊| 卖淫是什么意思| 象牙塔比喻什么| 农历3月12日是什么星座| 每次上大便都出血是什么原因| 124是什么意思| 小孩尿酸高是什么原因| 什么人容易得甲亢| 1870年是什么朝代| 金屋藏娇定富贵是什么生肖| 尿检粘液丝高什么意思| 山楂什么时候成熟| 肌腱是什么组织| 关羽使用的武器是什么| 激光点痣后需要注意什么| 好奇害死猫什么意思| 12.6是什么星座| 痛风吃什么蔬菜| 脸上过敏是什么症状| 白鸡蛋是什么鸡下的蛋| 流产后吃什么补身体| 夜半是什么时辰| 幼儿腹泻吃什么食物| 维生素d3什么牌子好| 撒丫子是什么意思| 本命年为什么要穿红色| 白细胞一个加号什么意思| 道貌岸然是什么生肖| 有是什么意思| 严什么的态度| 梦到蛇预示着什么意思| 10月份什么星座| 7月1号是什么节| b族维生素是什么意思| 皮肤痒挂什么科| 传染源是什么| 阴山是今天的什么地方| 腿疼膝盖疼是什么原因| 7月28号是什么星座| 寒冷性荨麻疹是什么原因引起的| 灌注是什么意思| 津津有味的意思是什么| 脂肪肝喝什么茶最好| 胃有灼热感是什么原因| 二花是什么中药| 喉咙发炎吃什么药好得快| 甲沟炎去医院挂什么科| 红豆生南国什么意思| 彩虹为什么有七种颜色| 大姨妈来了可以吃什么水果| 铁树开花是什么意思| a型血为什么叫贵族血| 元气是什么意思| 甲功七项挂什么科| 吃什么助消化| 12月是什么月| Years什么意思| 什么是色拉油| 母亲生日送什么礼物| 梦见小老虎是什么预兆| 吃什么能快速减肥| 梦到砍树是什么意思| tnt是什么意思| 门良念什么| 电荷是什么| 河粉是什么材料做的| 凤尾鱼为什么突然就死| 治胃病吃什么药| 相夫教子是什么意思| 桂花树施什么肥| 什么叫一个周期| 脾气是什么意思| 嗓子疼看什么科室| seiko手表是什么牌子| 热脸贴冷屁股是什么意思| 眼角痒用什么眼药水| 切除脾脏对身体有什么影响| 尿粒细胞酯酶阳性什么意思| 牙龈翻瓣术是什么意思| 孕妇吃什么补钙| 5月15日是什么星座| 衣原体感染有什么症状| 什么体质人容易长脚气| 尿检潜血是什么意思| 看胸挂什么科| 什么病不能吃秋葵| 黑色签字笔是什么笔| 9.1什么星座| 肝多发囊肿是什么意思| 空心菜什么人不能吃| 聚酯纤维是什么材料| 4月15号是什么星座| 周围型肺ca是什么意思| rsa是什么意思| 油是什么意思| 产复欣颗粒什么时候吃| 孕妇吃什么补铁| 鹰和隼有什么区别| 盘古是一个什么样的人| 黑芝麻不能和什么一起吃| 苦瓜有什么营养| 什么眉什么眼| 肝脏钙化灶什么意思| 私房菜是什么意思| 中气不足是什么意思| 主食是什么意思| 夜晚咳嗽是什么原因| mz是什么意思| 庚是什么意思| 红蜘蛛用什么药| 绝无仅有的绝什么意思| 血液粘稠吃什么药| 大腿淤青是什么原因| 左眼皮一直跳什么预兆| 正方形体积公式是什么| 低密度结节是什么意思| 什么叫传统文化| 去医院验血挂什么科| 县检察长是什么级别| 07年属什么生肖| 吃什么升血小板快| 8.19是什么星座| 707是什么意思| 车厘子什么时候成熟| 鸟来家里预示什么| 三长两短是什么意思| 胆汁淤积症有什么症状| 藜麦是什么东西| 小孩肚子疼吃什么药| 静修是什么意思| 为什么蚊子总是咬我| 宦官是什么意思| 什么生木| 教研是什么意思| 肛瘘是什么原因造成的| 牛肉烧什么好吃| 为什么尿会很黄| 降血压吃什么药| 为什么想到一个人会心痛| 左脸颊长痘是什么原因| 眩晕症挂什么科| 梦见自己被抢劫了预示什么| 老虎五行属什么| 鼻息肉是什么样的图片| 胃痛吃什么食物| 乙肝两对半245阳性是什么意思| 拍手腕中间有什么好处| 1.20是什么星座| 团粉是什么| 什么家庭不宜挂八骏图| get什么意思| levis是什么牌子| 荆棘是什么植物| 33朵玫瑰花代表什么意思| 头部MRI检查是什么意思| 九眼天珠是什么做的| 蜻蜓点水是什么行为| 为什么不建议割鼻息肉| 森达属于什么档次的鞋| 百度Jump to content

2017湖南醴陵市普通高校应届毕业生招聘教师体检合格

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by DuncanHill (talk | contribs) at 18:23, 5 January 2025 (Fixing harv/sfn error. Please watchlist Category:Harv and Sfn no-target errors and install User:Trappist the monk/HarvErrors.js to help you spot such errors when reading and editing.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem states that the analogue in four dimensions yields square roots of every natural number
百度 由中美两国的贸易互补性指数(图1、图2)可看出,在劳动力密集型行业中,美国多依赖中国,而资本密集型行业的情况相反。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares of integers is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares of non-negative integers (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal to n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1916.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Sun 2017.
  15. ^ Spencer 1996.

References

糖耐什么时候做 说什么情深似海我却不敢当 太公是什么意思 抠鼻表情是什么意思 吃完晚饭就犯困是什么原因
宝宝胀气是什么原因引起的 什么是子宫憩室 pigeon是什么意思 翻毛皮是什么材质 琨字五行属什么
补肾壮阳吃什么好 肾结石发作有什么症状 尿崩症是什么症状 热火朝天是什么生肖 在岸人民币和离岸人民币什么意思
跑步后头晕是什么原因 生死离别代表什么生肖 感冒流鼻涕吃什么药 奉天为什么改名沈阳 慢性肾功能不全是什么意思
为什么睡觉流口水很臭hcv7jop5ns5r.cn 苏联什么时候解体hcv8jop3ns3r.cn 两女 一杯是什么hcv8jop6ns5r.cn 璋字五行属什么hcv8jop8ns7r.cn 黄瓜为什么是苦的hcv7jop7ns0r.cn
真菌感染用什么药最好hcv9jop1ns0r.cn 蛇的尾巴有什么作用hcv7jop6ns4r.cn 什么是早孕hcv8jop8ns7r.cn 马超属什么生肖hcv8jop5ns2r.cn 晔字为什么不能取名hcv8jop1ns6r.cn
萎靡不振是什么意思hcv8jop6ns0r.cn 脑白质疏松是什么病hcv9jop0ns4r.cn 英国用什么货币hcv8jop2ns2r.cn tj是什么意思hcv8jop3ns8r.cn 花子是什么意思hcv7jop7ns2r.cn
戴银首饰对身体有什么好处xjhesheng.com 肝不好吃什么hcv8jop1ns7r.cn store是什么qingzhougame.com 树木什么hcv9jop0ns5r.cn rta是什么意思hcv9jop4ns0r.cn
百度