肚子胀气吃什么食物| 什么是医院感染| 为什么叫五七干校| 西米是什么东西做的| 出现幻觉是什么原因引起的| 心脏消融术是什么手术| 2.13是什么星座| 戒指戴哪个手指代表什么| modal是什么意思| 麦芽糖醇是什么| 墨池为什么不爱柔嘉了| 萎缩性胃炎是什么原因引起的| 为什么会长痘痘| 经常喝饮料有什么危害| 舌头发白有齿痕是什么原因| 米酒不甜是什么原因| 柳絮吃了有什么好处| 山竹有什么功效和作用| 龋齿和蛀牙有什么区别| 哺乳期可以喝什么饮料| 心脏供血不足是什么原因引起的| 梦见男朋友出轨了是什么意思| 戊戌是什么意思| 蝉蜕是什么| 小m是什么意思| 为什么要写作业| 阿奇霉素和头孢有什么区别| 轮廓是什么意思| 葡萄胎有什么症状反应| 麻雀为什么跳着走| 白玫瑰代表什么| 脚底出汗是什么原因女| 九头身什么意思| 早孕挂什么科检查| 肠息肉是什么原因造成的| 水军什么意思| 尖湿锐吃什么药最好| 820是什么意思| 急性上呼吸道感染吃什么药| 立夏吃什么食物| 布施什么意思| 托班是什么意思| 鹅拉绿色粪便是什么病| 祸祸是什么意思| 特长有什么| 稽留流产什么意思| 平方和是什么| 卫生湿巾是干什么用的| 高考吃什么菜| 寻常疣是什么| 萎缩性胃炎是什么意思| 女生胸疼是什么原因| 似乎是什么意思| 扁平疣是什么病| 蜘蛛的血是什么颜色的| 舌头痒是什么原因| 遮挡车牌属于什么行为| 互卦是什么意思| 鸡的守护神是什么菩萨| 什么东西醒酒| 小脑萎缩吃什么药好| 草木皆兵指什么生肖| 孤独的最高境界是什么| 湘雅医院院长什么级别| 爱因斯坦是什么星座| 蚂蚁上树是什么意思| 什么叫肠化| 文胸36码是什么尺寸| 拉肚子恶心想吐吃什么药| 3p 什么意思| 吃什么增强抵抗力| 做梦梦到别人死了是什么征兆| 肌苷是什么| cm是什么单位| 阴道口溃疡用什么药| 能级是什么意思| hpv16有什么症状| feat什么意思| 受惊吓吃什么药| 心脏超声检查是什么| 吃完桃子不能吃什么| 马是什么牌子的车| 白脸代表什么| 柠檬可以做什么| 喉咙痛吃什么药好得快| 什么人容易得骨髓瘤| 左舌根疼痛是什么情况| 新生儿拉肚子是什么原因引起的| 什么作用| 梦见孕妇大肚子是什么意思| 托大是什么意思| 手一直脱皮是什么原因| 手足口病涂抹什么药膏| 绿五行属什么| 什么是磁共振| 相濡以沫不如相忘于江湖是什么意思| 堂妹是什么关系| 12月31号什么星座| 北京市长属于什么级别| 怜香惜玉是什么意思| 率性是什么意思| 梦到拆房子是什么意思| 机械键盘什么轴最好| 茄子与什么食物相克| 智齿发炎吃什么| 起死回生是什么意思| 新疆为什么天黑的晚| 检测怀孕最准确的方法是什么| 吃什么能补充雌激素| 月经量太少是什么原因引起的| 假花放在家里有什么忌讳| 中央处理器由什么组成| emma是什么意思| 神经是什么东西| 什么是简历| 溺爱的意思是什么| 羽五行属什么| 左边脸长痘痘是什么原因| 五指毛桃不能和什么一起吃| 间歇是什么意思| 草果是什么| 导管室是干什么的| 肝气不足吃什么中成药| 50米7秒什么水平| 荸荠的读音是什么| 7月1日是什么节| 欲仙欲死是什么意思| 月经期间能吃什么水果| 胸痛是什么病的前兆| 延时吃什么药| 云什么什么什么| 吃什么对大脑记忆力好| 画是什么生肖| 皮肤病是什么原因造成的| 甲状腺属于什么科室| 什么病会导致不来月经| 低压高是什么原因造成的| 翌日什么意思| 什么药可以延长性功能| 肾衰竭吃什么水果好| 缺如是什么意思| 过敏用什么药膏| 一本线是什么意思| 鳄龟吃什么食物| 上什么下什么| pvs是什么意思| 伤口愈合为什么会痒| 甲沟炎医院挂什么科| 足底筋膜炎挂什么科| 青蛙吃什么食物| 木命人五行缺什么| 鼻窦炎有什么症状表现| 染发膏用什么能洗掉| 温婉是什么意思| 医保统筹是什么意思| 人五人六是什么意思| 龟头炎用什么| 八年是什么婚| 96年属什么的生肖| 十月是什么星座| 什么品牌的卫浴好| 6月15是什么星座| 柳字五行属什么| 白带有点黄是什么原因| 陈皮是什么| 黄金为什么这么贵| 大哥是什么意思| 甲亢是一种什么病严重吗| 什么冰冰| 皮肤发红发烫是什么原因| 香港脚是什么| 乳头疼是什么原因| 狗不理是什么意思| 1月19号什么星座| 巴适什么意思| 脉搏强劲有力代表什么| 什么是危险期| 血型阳性是什么意思| 北芪煲汤加什么药材好| 儿童上火吃什么药最好| 什么食物含维生素a| 黄瓜有什么好处| 奇货可居什么意思| 孕妇能吃什么水果| 三焦是什么器官| 为什么肚子疼| 病毒感染咳嗽吃什么药| 什么气组词| 肽有什么作用| 善茬是什么意思| 湿气重可以吃什么水果| 什么石头最值钱| 不10是什么意思| 小孩上火吃什么药| 扫地僧是什么意思| 怀孕第一天有什么症状| 1960属什么生肖| 梦见飞机是什么意思| 睡觉做噩梦是什么原因| 感冒吃什么水果好| 济公是什么生肖| 土命适合什么颜色| 叹气是什么意思| 豆瓣是什么软件| 蟑螂讨厌什么味道| 最大的哺乳动物是什么| 痢疾吃什么药效果最好| 脑梗前兆是什么症状| 新生儿脸上有小红点带白头是什么| 蹶是什么意思| 咽鼓管炎吃什么药| 什么叫切片| 什么血型能生出o型血| hpv73阳性是什么意思| 姜字五行属什么| 上坟可以带什么水果| tao是什么意思| 拔完智齿第三天可以吃什么| 紧张的反义词是什么| 非甾体抗炎药是什么意思| 阑尾炎可以吃什么东西| 出虚恭是什么意思| 厌食症吃什么药| hpvhr阳性什么意思| 草木灰是什么| 什么叫房颤| 过山风是什么蛇| 巳时是什么时间| 白细胞减少有什么症状| 前列腺肥大是什么症状| 国安局是什么单位| 知天命是什么意思| 抗锯齿是什么意思| 蛇是什么类动物| 七岁属什么生肖| 尿酸过高是什么原因| 陆地上最重的动物是什么| 梵音是什么意思| 天牛长什么样子| 反酸吃什么药| 花青素是什么| 类风湿不能吃什么| 流鼻涕吃什么药好得快| 农历五月初五是什么节日| 肠胃不舒服吃什么药| 甘是什么味道| 嗯呢什么意思| 感冒冒虚汗是什么原因| 清谷天指的是什么| 约炮是什么意思| 柠檬水喝多了有什么坏处| 什么时候大暑| 温州人为什么会做生意| 试管是什么意思| 亲热是什么意思| 恋童癖是什么意思| 人为什么要吃盐| 胆红素偏高有什么危害| 李连杰是什么国籍| 鸡呜狗盗是什么生肖| 林冲为什么叫豹子头| 猫什么时候传入中国| 贫血有什么症状| 天丝是什么| 百度Jump to content

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by DuncanHill (talk | contribs) at 18:24, 5 January 2025 (Conform). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem states that the analogue in four dimensions yields square roots of every natural number
百度 本次抽检蔬菜制品77批次,74批次合格,实物质量合格率为%,不合格的3批次都是酱腌菜。

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares.[1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows:

This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.

Historical development

From examples given in the Arithmetica, it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. But the theorem was not proved until 1770 by Lagrange.[2]

Adrien-Marie Legendre extended the theorem in 1797–8 with his three-square theorem, by proving that a positive integer can be expressed as the sum of three squares if and only if it is not of the form for integers k and m. Later, in 1834, Carl Gustav Jakob Jacobi discovered a simple formula for the number of representations of an integer as the sum of four squares with his own four-square theorem.

The formula is also linked to Descartes' theorem of four "kissing circles", which involves the sum of the squares of the curvatures of four circles. This is also linked to Apollonian gaskets, which were more recently related to the Ramanujan–Petersson conjecture.[3]

Proofs

The classical proof

Several very similar modern versions[4][5][6] of Lagrange's proof exist. The proof below is a slightly simplified version, in which the cases for which m is even or odd do not require separate arguments.

The classical proof

It is sufficient to prove the theorem for every odd prime number p. This immediately follows from Euler's four-square identity (and from the fact that the theorem is true for the numbers 1 and 2).

The residues of a2 modulo p are distinct for every a between 0 and (p ? 1)/2 (inclusive). To see this, take some a and define c as a2 mod p. a is a root of the polynomial x2 ? c over the field Z/pZ. So is p ? a (which is different from a). In a field K, any polynomial of degree n has at most n distinct roots (Lagrange's theorem (number theory)), so there are no other a with this property, in particular not among 0 to (p ? 1)/2.

Similarly, for b taking integral values between 0 and (p ? 1)/2 (inclusive), the ?b2 ? 1 are distinct. By the pigeonhole principle, there are a and b in this range, for which a2 and ?b2 ? 1 are congruent modulo p, that is for which

Now let m be the smallest positive integer such that mp is the sum of four squares, x12 + x22 + x32 + x42 (we have just shown that there is some m (namely n) with this property, so there is a least one m, and it is smaller than p). We show by contradiction that m equals 1: supposing it is not the case, we prove the existence of a positive integer r less than m, for which rp is also the sum of four squares (this is in the spirit of the infinite descent[7] method of Fermat).

For this purpose, we consider for each xi the yi which is in the same residue class modulo m and between (–m + 1)/2 and m/2 (possibly included). It follows that y12 + y22 + y32 + y42 = mr, for some strictly positive integer r less than m.

Finally, another appeal to Euler's four-square identity shows that mpmr = z12 + z22 + z32 + z42. But the fact that each xi is congruent to its corresponding yi implies that all of the zi are divisible by m. Indeed,

It follows that, for wi = zi/m, w12 + w22 + w32 + w42 = rp, and this is in contradiction with the minimality of m.

In the descent above, we must rule out both the case y1 = y2 = y3 = y4 = m/2 (which would give r = m and no descent), and also the case y1 = y2 = y3 = y4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x12 + x22 + x32 + x42 would be a multiple of m2, contradicting the fact that p is a prime greater than m.

Proof using the Hurwitz integers

Another way to prove the theorem relies on Hurwitz quaternions, which are the analog of integers for quaternions.[8]

Proof using the Hurwitz integers

The Hurwitz quaternions consist of all quaternions with integer components and all quaternions with half-integer components. These two sets can be combined into a single formula where are integers. Thus, the quaternion components are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.

The (arithmetic, or field) norm of a rational quaternion is the nonnegative rational number where is the conjugate of . Note that the norm of a Hurwitz quaternion is always an integer. (If the coefficients are half-integers, then their squares are of the form , and the sum of four such numbers is an integer.)

Since quaternion multiplication is associative, and real numbers commute with other quaternions, the norm of a product of quaternions equals the product of the norms:

For any , . It follows easily that is a unit in the ring of Hurwitz quaternions if and only if .

The proof of the main theorem begins by reduction to the case of prime numbers. Euler's four-square identity implies that if Lagrange's four-square theorem holds for two numbers, it holds for the product of the two numbers. Since any natural number can be factored into powers of primes, it suffices to prove the theorem for prime numbers. It is true for . To show this for an odd prime integer p, represent it as a quaternion and assume for now (as we shall show later) that it is not a Hurwitz irreducible; that is, it can be factored into two non-unit Hurwitz quaternions

The norms of are integers such that and . This shows that both and are equal to p (since they are integers), and p is the sum of four squares

If it happens that the chosen has half-integer coefficients, it can be replaced by another Hurwitz quaternion. Choose in such a way that has even integer coefficients. Then

Since has even integer coefficients, will have integer coefficients and can be used instead of the original to give a representation of p as the sum of four squares.

As for showing that p is not a Hurwitz irreducible, Lagrange proved that any odd prime p divides at least one number of the form , where l and m are integers.[8] This can be seen as follows: since p is prime, can hold for integers , only when . Thus, the set of squares contains distinct residues modulo p. Likewise, contains residues. Since there are only p residues in total, and , the sets X and Y must intersect.

The number u can be factored in Hurwitz quaternions:

The norm on Hurwitz quaternions satisfies a form of the Euclidean property: for any quaternion with rational coefficients we can choose a Hurwitz quaternion so that by first choosing so that and then so that for . Then we obtain

It follows that for any Hurwitz quaternions with , there exists a Hurwitz quaternion such that

The ring H of Hurwitz quaternions is not commutative, hence it is not an actual Euclidean domain, and it does not have unique factorization in the usual sense. Nevertheless, the property above implies that every right ideal is principal. Thus, there is a Hurwitz quaternion such that

In particular, for some Hurwitz quaternion . If were a unit, would be a multiple of p, however this is impossible as is not a Hurwitz quaternion for . Similarly, if were a unit, we would have so p divides , which again contradicts the fact that is not a Hurwitz quaternion. Thus, p is not Hurwitz irreducible, as claimed.

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalization is the following problem: Given natural numbers , can we solve

for all positive integers n in integers ? The case is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan.[9] He proved that if we assume, without loss of generality, that then there are exactly 54 possible choices for such that the problem is solvable in integers for all n. (Ramanujan listed a 55th possibility , but in this case the problem is not solvable if .[10])

Algorithms

In 1986, Michael O. Rabin and Jeffrey Shallit[11] proposed randomized polynomial-time algorithms for computing a single representation for a given integer n, in expected running time . It was further improved to by Paul Pollack and Enrique Trevi?o in 2018.[12]

Number of representations

The number of representations of a natural number n as the sum of four squares of integers is denoted by r4(n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[13]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than 8log n.[13]

Uniqueness

The sequence of positive integers which have only one representation as a sum of four squares of non-negative integers (up to order) is:

1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896 ... (sequence A006431 in the OEIS).

These integers consist of the seven odd numbers 1, 3, 5, 7, 11, 15, 23 and all numbers of the form or .

The sequence of positive integers which cannot be represented as a sum of four non-zero squares is:

1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896 ... (sequence A000534 in the OEIS).

These integers consist of the eight odd numbers 1, 3, 5, 9, 11, 17, 29, 41 and all numbers of the form or .

Further refinements

Lagrange's four-square theorem can be refined in various ways. For example, Zhi-Wei Sun[14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers.

One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares. Eduard Wirsing proved that there exists a set of squares S with such that every positive integer smaller than or equal to n can be written as a sum of at most 4 elements of S.[15]

See also

Notes

  1. ^ Andrews, George E. (1994), Number Theory, Dover Publications, p. 144, ISBN 0-486-68252-8
  2. ^ Ireland & Rosen 1990.
  3. ^ Sarnak 2013.
  4. ^ Landau 1958, Theorems 166 to 169.
  5. ^ Hardy & Wright 2008, Theorem 369.
  6. ^ Niven & Zuckerman 1960, paragraph 5.7.
  7. ^ Here the argument is a direct proof by contradiction. With the initial assumption that m > 2, m < p, is some integer such that mp is the sum of four squares (not necessarily the smallest), the argument could be modified to become an infinite descent argument in the spirit of Fermat.
  8. ^ a b Stillwell 2003, pp. 138–157.
  9. ^ Ramanujan 1916.
  10. ^ Oh 2000.
  11. ^ Rabin & Shallit 1986.
  12. ^ Pollack & Trevi?o 2018.
  13. ^ a b Williams 2011, p. 119.
  14. ^ Sun 2017.
  15. ^ Spencer 1996

References

肠炎用什么药好 水瓶座是什么星座 阴囊潮湿瘙痒是什么原因 2月16号是什么星座 手机什么时候发明的
清华什么专业最好 dsa检查是什么意思 掌心有痣代表什么 笔画最多的字是什么字 为什么犹太人聪明
肝囊肿是什么原因造成的 测骨龄去医院挂什么科 穆斯林是什么 华佗发明了什么 足跟痛挂什么科
冲锋衣三合一是什么意思 东华帝君的真身是什么 身份证后四位代表什么 8月11日是什么星座 维生素b是补什么的
狠人是什么意思hcv9jop6ns7r.cn 凉皮是什么材料做的hcv8jop8ns1r.cn 耳后淋巴结肿大挂什么科hcv8jop7ns0r.cn 喉炎吃什么药效果最好hcv9jop5ns2r.cn 摇摇欲坠是什么意思hcv9jop7ns3r.cn
新生儿吐奶什么原因hcv7jop9ns3r.cn 降三高喝什么茶最好hcv9jop4ns9r.cn 玫瑰金是什么颜色0297y7.com mp5是什么hcv8jop4ns2r.cn 脸上突然长斑是什么原因引起的hcv8jop6ns6r.cn
静脉曲张是什么原因hcv9jop0ns9r.cn 抗结剂对人有什么伤害bjhyzcsm.com 肾功能挂什么科hcv8jop2ns2r.cn 四川九寨沟什么时候去最好hcv9jop5ns5r.cn 胸闷气短是什么原因引起的hcv9jop1ns0r.cn
腰痛是什么原因引起的hcv7jop5ns2r.cn 火牛命五行缺什么hcv8jop8ns9r.cn 水泊梁山什么意思hcv9jop3ns1r.cn exp是什么日期hcv9jop4ns1r.cn 梦见家里水管漏水是什么意思hcv9jop4ns6r.cn
百度