宠辱不惊是什么意思| 病毒性疣是什么病| 睡醒后嘴巴苦什么原因| 电邮地址是什么| 吃了避孕药有什么反应| bgb是什么意思| 平台期是什么意思| 蝶窦炎是什么病| 可望不可求是什么意思| 男同叫什么| 骨皮质断裂是什么意思| 刘封为什么不救关羽| 轴向是什么意思| 滑膜炎吃什么药好| 胃酸反流是什么原因| 六月初二是什么日子| 回族不吃什么肉| 医保报销是什么意思| 初次见面说什么| 铀是什么| 小孩缺锌吃什么补的快| 周杰伦为什么叫周董| 二次元谷子是什么意思| 苏州立夏吃什么| 尿频尿急吃什么药效果最好| 梦见狗死了是什么预兆| 懒惰是什么意思| M3什么意思| 幡是什么意思| 理综是什么| 尿微量白蛋白高吃什么药| 尿蛋白高是什么病| 面色潮红是什么原因| 扶山是什么意思| 神经外科和神经内科有什么区别| 搞破鞋是什么意思| 四氯化碳是什么| 天蝎男和什么星座最配| 软肋什么意思| 真菌性外耳道炎用什么药| 胸有成竹是什么意思| 心律不齐是什么意思| 宫颈lsil是什么意思| 敖是什么意思| 小孩经常发烧是什么原因| 手镯断了有什么预兆| 左侧肚脐旁边疼是什么原因| 什么食物含铁量最高| 三个目念什么| 人为什么会低血糖| 犹太人为什么不受欢迎| 脸皮最厚是什么生肖| 02年属马的是什么命| 211是什么意思| 胆囊是干什么用的| hibor是什么意思| 脚膜炎用什么药最好| 抻是什么意思| 九月二十二是什么星座| 口蜜腹剑是什么意思| 乳房胀痛什么原因| 前列腺是什么症状| 什么是产品| 经常晕车是什么原因| 处女男喜欢什么样的女生| 为什么身上有红色的痣| 梅杰综合症是什么病| 除服是什么意思| 文艺范是什么意思| 腹泻不能吃什么食物| 节操什么意思| 少将相当于地方什么级别| 心脏扩大吃什么药好| 团长是什么军衔| 藠头是什么菜| 耵聍是什么东西| 血压下午高是什么原因| 胃胀气是什么原因| 果断是什么意思| 路人甲是什么意思| 梦见结婚是什么意思| 病毒性感冒什么症状| 3楼五行属什么| 什么是好词| 自缢死亡是什么意思| iva是什么意思| 经常性头疼是什么原因| 肛瘘是什么原因引起的| 亚马逊是什么| 杨桃有什么营养价值| 牛蒡是什么| 乳腺1类是什么意思| 拉肚子拉稀水吃什么药| 血小板数目偏高是什么意思| 垂体瘤是什么病| 下眼睑浮肿是什么原因| 什么是米其林| 1948年属什么| 什么是淋巴结| 幽门螺旋杆菌有什么危害| 偶尔失眠是什么原因| 三摩地是什么意思| 高的部首是什么| 草莓的种子是什么| 肥皂剧是什么意思| q热是什么病| 脊膜瘤是什么样的病| 马头琴是什么族的乐器| apl是什么意思| 熬夜吃什么补回来| 水肿是什么| 耳鸣吃什么药效果最好| 总是失眠是什么原因| 眼镜pd是什么意思| 长残了是什么意思| 杵状指常见于什么病| 白兰地兑什么饮料好喝| 胎儿头围偏大什么原因| 出类拔萃是什么意思| 扁平疣用什么药膏除根| 疼风是什么原因引起的| 脑供血不足是什么原因| 杰士邦是什么| ldl是什么意思| 跌跌撞撞什么意思| 非萎缩性胃炎是什么意思| nt宝宝不配合说明什么| 老人身上痒是什么原因| 四个火念什么字| 铁扫帚命是什么意思| 普通健康证都检查什么| 彦五行属性是什么| 膀胱炎吃什么药好得快| 女菩萨是什么意思| 子宫肌瘤都有什么症状| 1884年属什么生肖| 海绵肾是什么意思| 吃什么可以瘦肚子| 白细胞高一点点是什么原因| 雪菜是什么菜| 小燕子吃什么| 火把节在每年农历的什么时间举行| 得济是什么意思| 咳嗽吃什么药效果好| 女人为什么会得甲状腺| 勉强是什么意思| 紫皮大蒜和白皮大蒜有什么区别| 凹儿念什么| 失重感是什么感觉| 经常吃豆腐有什么好处和坏处| 咖啡色配什么颜色好看| 青鹏软膏主要治疗什么| 脖子上长个包挂什么科| 重楼有什么功效| 日加立念什么字| 喉咙不舒服是什么原因| 女人吃什么水果最好| 怎么知道自己什么血型| 涵字取名的寓意是什么| 阴柔是什么意思| gtp什么意思| 什么是膝关节退行性变| 青稞是什么东西| 青少年手抖是什么原因| 什么样的人容易中暑| 陕西什么面| 磷高有什么症状和危害| 皮肤痒用什么药最好| 清清什么| 又什么又什么的词语| plg是什么意思| 脸上发红是什么原因| 木鱼是什么意思| 胎芽是什么| 怀孕胸部会有什么反应| 手指关节疼痛挂什么科| 熠五行属什么| 孔雀蓝是什么颜色| 控制欲是什么意思| 康波是什么意思| 猩红热是什么| 喉咙有异物感是什么原因| 心房扑动是什么意思| 为什么小便是红色的尿| apk是什么格式| 脑梗是什么引起的| 市局长是什么级别| 办理护照需要什么| 为什么叫丁克| 呕吐吃什么药| 淋巴细胞偏高是什么原因| 骨皮质扭曲是什么意思啊| 什么是性侵| 高尿酸血症是什么意思| 老掉头发是什么原因| 香港身份证有什么好处| 肾阴阳两虚吃什么| rh阴性血是什么血型| 清洁度iv是什么意思| 别出心裁什么意思| 喝枸杞子泡水有什么好处和坏处| 88年属什么生肖| 后遗症是什么意思| 观落阴是什么意思| 腿膝盖后面的窝窝疼是什么原因| 小针刀是什么| 女人吃什么提高性激素| 中巴友谊为什么这么好| 车间管理人员工资计入什么科目| 你想什么| 精神出轨是什么意思| 做凉粉用什么淀粉最好| 96999是什么电话| 肠炎吃什么食物| 间接胆红素偏高什么意思| 性生活是什么意思| 眼睛红痒用什么眼药水| 抽血后头晕是什么原因| 尿白细胞阳性什么意思| 护理学是学什么的| 性转是什么意思| 直接胆红素偏高是什么原因| edifier是什么牌子| 恭喜恭喜是什么意思| 儿女情长英雄气短是什么意思| 眩晕停又叫什么| 指奸是什么意思| 相亲为什么不能拖太久| 看乳腺结节挂什么科| 阳暑吃什么药| 肛门瘙痒用什么药膏好| 琳琅是什么意思| 一个虫一个合读什么| 以什么当什么| 生育保险是什么| 建字五行属什么| 上面一个山下面一个今读什么| 山楂和什么不能一起吃| 大便干燥一粒一粒的吃什么药| 女人梦见棺材代表什么| 六月是什么生肖| 牙疳是什么意思| 大腿淤青是什么原因| 什么人一年只工作一天| 低gi什么意思| 为什么会打喷嚏| 小肚子一直疼是什么原因| 什么是简历| 受虐倾向是什么意思| 天蝎是什么象星座| 盖碗适合泡什么茶| 为什么叫五七干校| uno是什么| 珵字五行属什么| 微信附近的人都是些什么人| 反胃是什么意思| 血红蛋白偏低是什么意思| 牙膏洗脸有什么好处和坏处| 欣赏一个人是什么意思| 为什么一坐车就想睡觉| 左眼皮老是跳是什么原因| biw医学上是什么意思| 为什么打死不吃骡子肉| 轻微骨裂了有什么表现| 百度Jump to content

南海舰队两栖登陆兵力演练夺岛 国产气垫船亮相

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
百度 北京第二外国语学院旅游管理学院院长厉新建认为,文旅项目投资建设不仅会继续鼓励引进国际高水平文旅品牌,更会积极挖掘中华民族优秀文化资源,形成中国文旅品牌,促进优秀文化传承,推动文化走出去。

In the mathematical field of analysis, a well-known theorem describes the set of discontinuities of a monotone real-valued function of a real variable; all discontinuities of such a (monotone) function are necessarily jump discontinuities and there are at most countably many of them.

Usually, this theorem appears in literature without a name. It is called Froda's theorem in some recent works; in his 1929 dissertation, Alexandru Froda stated that the result was previously well-known and had provided his own elementary proof for the sake of convenience.[1] Prior work on discontinuities had already been discussed in the 1875 memoir of the French mathematician Jean Gaston Darboux.[2]

Definitions

Denote the limit from the left by and denote the limit from the right by

If and exist and are finite then the difference is called the jump[3] of at

Consider a real-valued function of real variable defined in a neighborhood of a point If is discontinuous at the point then the discontinuity will be a removable discontinuity, or an essential discontinuity, or a jump discontinuity (also called a discontinuity of the first kind).[4] If the function is continuous at then the jump at is zero. Moreover, if is not continuous at the jump can be zero at if

Precise statement

Let be a real-valued monotone function defined on an interval Then the set of discontinuities of the first kind is at most countable.

One can prove[5][3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form:

Let be a monotone function defined on an interval Then the set of discontinuities is at most countable.

Proofs

This proof starts by proving the special case where the function's domain is a closed and bounded interval [6][7] The proof of the general case follows from this special case.

Proof when the domain is closed and bounded

Two proofs of this special case are given.

Proof 1

Let be an interval and let be a non-decreasing function (such as an increasing function). Then for any Let and let be points inside at which the jump of is greater or equal to :

For any so that Consequently, and hence

Since we have that the number of points at which the jump is greater than is finite (possibly even zero).

Define the following sets:

Each set is finite or the empty set. The union contains all points at which the jump is positive and hence contains all points of discontinuity. Since every is at most countable, their union is also at most countable.

If is non-increasing (or decreasing) then the proof is similar. This completes the proof of the special case where the function's domain is a closed and bounded interval.

Proof 2

For a monotone function , let mean that is monotonically non-decreasing and let mean that is monotonically non-increasing. Let is a monotone function and let denote the set of all points in the domain of at which is discontinuous (which is necessarily a jump discontinuity).

Because has a jump discontinuity at so there exists some rational number that lies strictly in between (specifically, if then pick so that while if then pick so that holds).

It will now be shown that if are distinct, say with then If then implies so that If on the other hand then implies so that Either way,

Thus every is associated with a unique rational number (said differently, the map defined by is injective). Since is countable, the same must be true of

Proof of general case

Suppose that the domain of (a monotone real-valued function) is equal to a union of countably many closed and bounded intervals; say its domain is (no requirements are placed on these closed and bounded intervals[a]). It follows from the special case proved above that for every index the restriction of to the interval has at most countably many discontinuities; denote this (countable) set of discontinuities by If has a discontinuity at a point in its domain then either is equal to an endpoint of one of these intervals (that is, ) or else there exists some index such that in which case must be a point of discontinuity for (that is, ). Thus the set of all points of at which is discontinuous is a subset of which is a countable set (because it is a union of countably many countable sets) so that its subset must also be countable (because every subset of a countable set is countable).

In particular, because every interval (including open intervals and half open/closed intervals) of real numbers can be written as a countable union of closed and bounded intervals, it follows that any monotone real-valued function defined on an interval has at most countable many discontinuities.

To make this argument more concrete, suppose that the domain of is an interval that is not closed and bounded (and hence by Heine–Borel theorem not compact). Then the interval can be written as a countable union of closed and bounded intervals with the property that any two consecutive intervals have an endpoint in common: If then where is a strictly decreasing sequence such that In a similar way if or if In any interval there are at most countable many points of discontinuity, and since a countable union of at most countable sets is at most countable, it follows that the set of all discontinuities is at most countable.

Jump functions

Examples. Let x1 < x2 < x3 < ??? be a countable subset of the compact interval [a,b] and let μ1, μ2, μ3, ... be a positive sequence with finite sum. Set

where χA denotes the characteristic function of a compact interval A. Then f is a non-decreasing function on [a,b], which is continuous except for jump discontinuities at xn for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions.[8][9]

More generally, the analysis of monotone functions has been studied by many mathematicians, starting from Abel, Jordan and Darboux. Following Riesz & Sz.-Nagy (1990), replacing a function by its negative if necessary, only the case of non-negative non-decreasing functions has to be considered. The domain [a,b] can be finite or have ∞ or ?∞ as endpoints.

The main task is to construct monotone functions — generalising step functions — with discontinuities at a given denumerable set of points and with prescribed left and right discontinuities at each of these points. Let xn (n ≥ 1) lie in (a, b) and take λ1, λ2, λ3, ... and μ1, μ2, μ3, ... non-negative with finite sum and with λn + μn > 0 for each n. Define

for for

Then the jump function, or saltus-function, defined by

is non-decreasing on [a, b] and is continuous except for jump discontinuities at xn for n ≥ 1.[10][11][12][13]

To prove this, note that sup |fn| = λn + μn, so that Σ fn converges uniformly to f. Passing to the limit, it follows that

and

if x is not one of the xn's.[10]

Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties:[14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity xn; (3) satisfying the boundary condition f(a) = 0; and (4) having zero derivative almost everywhere.

Proof that a jump function has zero derivative almost everywhere.

Property (4) can be checked following Riesz & Sz.-Nagy (1990), Rubel (1963) and Komornik (2016). Without loss of generality, it can be assumed that f is a non-negative jump function defined on the compact [a,b], with discontinuities only in (a,b).

Note that an open set U of (a,b) is canonically the disjoint union of at most countably many open intervals Im; that allows the total length to be computed ?(U)= Σ ?(Im). Recall that a null set A is a subset such that, for any arbitrarily small ε' > 0, there is an open U containing A with ?(U) < ε'. A crucial property of length is that, if U and V are open in (a,b), then ?(U) + ?(V) = ?(UV) + ?(UV).[15] It implies immediately that the union of two null sets is null; and that a finite or countable set is null.[16][17]

Proposition 1. For c > 0 and a normalised non-negative jump function f, let Uc(f) be the set of points x such that

for some s, t with s < x < t. Then Uc(f) is open and has total length ?(Uc(f)) ≤ 4 c?1 (f(b) – f(a)).

Note that Uc(f) consists the points x where the slope of h is greater that c near x. By definition Uc(f) is an open subset of (a, b), so can be written as a disjoint union of at most countably many open intervals Ik = (ak, bk). Let Jk be an interval with closure in Ik and ?(Jk) = ?(Ik)/2. By compactness, there are finitely many open intervals of the form (s,t) covering the closure of Jk. On the other hand, it is elementary that, if three fixed bounded open intervals have a common point of intersection, then their union contains one of the three intervals: indeed just take the supremum and infimum points to identify the endpoints. As a result, the finite cover can be taken as adjacent open intervals (sk,1,tk,1), (sk,2,tk,2), ... only intersecting at consecutive intervals.[18] Hence

Finally sum both sides over k.[16][17]

Proposition 2. If f is a jump function, then f '(x) = 0 almost everywhere.

To prove this, define

a variant of the Dini derivative of f. It will suffice to prove that for any fixed c > 0, the Dini derivative satisfies Df(x) ≤ c almost everywhere, i.e. on a null set.

Choose ε > 0, arbitrarily small. Starting from the definition of the jump function f = Σ fn, write f = g + h with g = ΣnN fn and h = Σn>N fn where N ≥ 1. Thus g is a step function having only finitely many discontinuities at xn for nN and h is a non-negative jump function. It follows that Df = g' +Dh = Dh except at the N points of discontinuity of g. Choosing N sufficiently large so that Σn>N λn + μn < ε, it follows that h is a jump function such that h(b) ? h(a) < ε and Dhc off an open set with length less than 4ε/c.

By construction Dfc off an open set with length less than 4ε/c. Now set ε' = 4ε/c — then ε' and c are arbitrarily small and Dfc off an open set of length less than ε'. Thus Dfc almost everywhere. Since c could be taken arbitrarily small, Df and hence also f ' must vanish almost everywhere.[16][17]

As explained in Riesz & Sz.-Nagy (1990), every non-decreasing non-negative function F can be decomposed uniquely as a sum of a jump function f and a continuous monotone function g: the jump function f is constructed by using the jump data of the original monotone function F and it is easy to check that g = F ? f is continuous and monotone.[10]

See also

Notes

  1. ^ So for instance, these intervals need not be pairwise disjoint nor is it required that they intersect only at endpoints. It is even possible that for all

References

  1. ^ Froda, Alexandre (3 December 1929). Sur la distribution des propriétés de voisinage des functions de variables réelles (PDF) (Thesis). Paris: Hermann. JFM 55.0742.02.
  2. ^ Jean Gaston Darboux, Mémoire sur les fonctions discontinues, Annales Scientifiques de l'école Normale Supérieure, 2-ème série, t. IV, 1875, Chap VI.
  3. ^ a b Nicolescu, Dinculeanu & Marcus 1971, p. 213.
  4. ^ Rudin 1964, Def. 4.26, pp. 81–82.
  5. ^ Rudin 1964, Corollary, p. 83.
  6. ^ Apostol 1957, pp. 162–3.
  7. ^ Hobson 1907, p. 245.
  8. ^ Apostol 1957.
  9. ^ Riesz & Sz.-Nagy 1990.
  10. ^ a b c Riesz & Sz.-Nagy 1990, pp. 13–15
  11. ^ Saks 1937.
  12. ^ Natanson 1955.
  13. ^ ?ojasiewicz 1988.
  14. ^ For more details, see
  15. ^ Burkill 1951, pp. 10?11.
  16. ^ a b c Rubel 1963
  17. ^ a b c Komornik 2016
  18. ^ This is a simple example of how Lebesgue covering dimension applies in one real dimension; see for example Edgar (2008).

Bibliography

肝内钙化斑是什么意思 格局是什么 中央政法委书记什么级别 膝关节疼痛挂什么科 口角是什么意思
蚕蛹吃什么 梦见梳头发是什么意思 眼睛充血是什么原因造成的 什么是沙发发质 体脂率是什么意思
坐围是什么 水木年华是什么意思 十二月六号是什么星座 心脏病是什么原因引起的 医学检验技术是什么
1990年的马是什么命 桑叶泡水喝有什么功效 高考什么时候恢复的 舒畅的舅舅是做什么的 老戏骨是什么意思
11.10是什么星座hcv8jop9ns1r.cn 火车为什么会晚点hcv8jop2ns9r.cn 玉米炒什么好吃hcv8jop2ns3r.cn 707是什么意思hcv9jop0ns8r.cn 塔罗牌逆位是什么意思hcv9jop4ns9r.cn
喉咙痛看什么科hcv9jop3ns5r.cn 现在吃什么水果wzqsfys.com 王维字什么hcv8jop8ns2r.cn 管科是什么专业creativexi.com 白蜡烛代表什么hcv7jop7ns1r.cn
心衰吃什么药效果最好hkuteam.com 市监狱长是什么级别mmeoe.com 平行班是什么意思hcv8jop8ns7r.cn 蠼螋吃什么hcv8jop0ns7r.cn 攻心翻是什么病hcv8jop8ns1r.cn
尿肌酐高是什么原因jingluanji.com 喝牛奶胀气是什么原因dajiketang.com 小孩晚上睡觉出汗是什么原因hcv7jop4ns7r.cn 口苦口臭口干吃什么药hcv9jop3ns1r.cn e3是什么意思jiuxinfghf.com
百度