cold是什么意思| 世界上笔画最多的字是什么字| 梦见移坟墓是什么预兆| up是什么意思| met是什么意思| 颇负盛名的颇是什么意思| 狗狗吃胡萝卜有什么好处| 自性是什么意思| cpr是什么| 开荤是什么意思| slogan是什么意思| 大便弱阳性是什么意思| 天象是什么意思| 白带清洁度lv是什么意思| 开店做什么生意好| 扁桃体发炎了吃什么药| 鸡内金有什么作用| 东京热是什么| 拜阿司匹灵是什么药| 佛心是什么意思| 苦海无涯回头是岸是什么意思| 唠嗑是什么意思| 两个虎念什么| 12月14日什么星座| 琥珀是什么颜色| 拉屎有血是什么原因| 什么是食品安全| 身份证末尾x代表什么| 七嘴八舌是什么生肖| 发物是什么| 红颜知己的意思是什么| 什么是早谢泄图片| 养肝护肝吃什么食物| 兔子是什么意思| 舌苔很厚很白什么原因| 妊娠期是什么意思| 哈尔滨机场叫什么名字| 侍妾是什么意思| 什么叫方差| 1893年属什么生肖| 中古包是什么意思| 窝里横是什么意思| 排尿困难是什么原因| 糖耐是检查什么的| 眼睛干涩模糊用什么药| 下午三点到四点是什么时辰| 乙肝表面抗体偏高是什么意思| 车间管理人员工资计入什么科目| 经常手淫对身体有什么危害| 纤维灶是什么意思| 忽什么忽什么| 88年属龙的是什么命| 血压高看什么科| 验尿能检查出什么| 第一次需要注意什么| 茱萸什么意思| 正军级是什么级别| 三七粉什么颜色| 打马赛克是什么意思| 石榴石一般什么价位| 荷叶搭配什么一起喝减肥效果好| 一日之计在于晨是什么生肖| 四月二十五是什么星座| 办暂住证需要什么| 女人平胸是什么原因| 吃什么清理脑血管堵塞| 12月2日什么星座| 皮肤痒是什么病的前兆| 喝酒脸红是什么原因| 什么是道德绑架| 晚上放屁多是什么原因| 1993年出生属什么生肖| 女人纵欲过度会有什么症状| 吃什么降血糖| 吃什么可以生精最快| 儒家思想是什么意思| 脑鸣吃什么药最有效| 月字旁的字有什么| 属猴的本命佛是什么佛| 轱辘是什么意思| 花生不能和什么食物一起吃| 什么是房补| 女性脱发严重是什么原因引起的| 全身性疾病是什么意思| 夏天能种什么菜| 除颤是什么意思| 左眼跳是什么预兆| 出现幻觉是什么原因引起的| 孕早期吃什么水果| 拉肚子可以吃什么水果| 儿童发育过早应该挂什么科| 洗牙有什么危害吗| 藏医最擅长治什么病| 长期肚子疼是什么原因| 建档需要准备什么资料| 性早熟有什么危害| 黄芪补什么| 小山羊是什么病| 男人阴虚吃什么药最好| 梦见家被偷了什么预兆| 什么叫近视| 早搏吃什么药效果好| 激光脱毛和冰点脱毛有什么区别| 奥美拉唑治什么胃病| 角化型脚气用什么药膏| bella是什么意思| 贫嘴是什么意思| 麸质是什么| 兆后面的单位是什么| 四月份什么星座| 妇科炎症吃什么药最好| 什么钱最不值钱| 聚酯纤维是什么面料| 疗养是什么意思| 不解什么| 看输卵管是否堵塞做什么检查| 乳腺结节是什么| 系统b超主要检查什么| 身体缺酶会得什么病| 酥油茶是什么做的| 泰五行属什么| 六月二十八是什么日子| 什么属于轻微糖尿病| super star是什么意思| 儿童口腔疱疹吃什么药| 九出十三归指什么生肖| 项羽字什么| 藕不能和什么一起吃| 出圈是什么意思| 生性是什么意思| 初检检查什么| 腰痛去医院挂什么科| 病案首页是什么| pro是什么氨基酸| 华为最新款手机是什么型号| 胰腺炎不能吃什么食物| 冬的部首是什么| 什么辣椒又香又辣| 万宝龙属于什么档次| 什么时候测血压最准确| 皮肤黄的人适合穿什么颜色的衣服| 茯苓有什么功效| 盆底肌松弛有什么影响| 心脏病人吃什么水果好| 补肾吃什么药最好| 什么样的树木| 供血不足吃什么药好| 脚底疼痛是什么原因| 属虎五行属什么| 脑干诱发电位检查是检查什么| 车水马龙是什么意思| 四环素片主要治什么病| 鬼针草有什么作用| 醋酸面料是什么| 住房公积金缴存基数是什么意思| 雪莲果什么时候成熟| 没有润滑剂可以用什么代替| 小青龙是什么龙虾| 手指关节疼痛挂什么科| 电气火灾用什么灭火| 3月16号是什么星座| 小孩多动症是什么原因引起的| 黄芪补什么| vs什么意思| 什么是特需门诊| 长期喝饮料对身体有什么危害| 白什么什么| 后遗症是什么意思| 现在当兵需要什么条件| 生龙活虎是什么意思| 梦到生孩子是什么意思| 孕期便秘吃什么通便快| 梦见自己拉了好多屎是什么意思| 心系是什么意思| 查黄体酮做什么检查| 红细胞偏低是什么意思| 星座之王是什么座| 微量泵是干什么用的| 打磨工为什么没人干| 献血证有什么用| 焦虑会引起什么症状| 朱元璋长什么样| 肠系膜脂膜炎是什么病| ecc是检查什么的| 陈赫是什么星座的| 什么样的夕阳| 嗳气和打嗝有什么区别| 皮炎是什么| 冰爽丝是什么面料| 指甲油什么牌子好| 休眠是什么意思| 11月20号什么星座| 今年是什么年| 高危行为是什么意思| 梦见摘丝瓜有什么预兆| 舌头肥厚是什么原因| 经期吃榴莲有什么好处和坏处| 唐玄宗为什么叫唐明皇| 喉咙发炎咳嗽吃什么药好得快| 琉璃是什么材质| 七月七是什么日子| vct是什么意思| 牙齿松动吃什么药最好| 铁公鸡是什么意思| 上传下达什么意思| 唇系带短有什么影响| 高血压吃什么中药| 孩子晚上睡觉磨牙是什么原因| 店招是什么意思| 空前绝后是什么生肖| 焦虑症吃什么药效果好| 明年属什么| 维生素d滴剂什么时候吃最好| 黑科技是什么意思| 蟑螂喜欢什么样的环境| 木耳和什么不能一起吃| 8月14是什么星座| 胆大包天是什么生肖| redline是什么牌子| 女生下面什么样| 男人是什么| 月经期可以吃什么水果| 鱼精是什么| 两肺纹理增多模糊是什么意思| 一什么粽子| 隐翅虫怕什么| 宫内积液什么意思| 乌龟吃什么| 大姨妈黑色是什么原因| 凌晨一点多是什么时辰| 去胎毒吃什么最好| 打篮球有什么好处| wrong什么意思| 桑葚搭配什么泡水喝最好| 手不自主颤抖是什么病| 梦见和别人打架是什么意思| 腹部疼痛挂什么科| 去年的树告诉我们什么| 癫痫病是什么病| 一晚上尿五六次是什么原因| 孕妇尿路感染吃什么药| 做什么检查需要空腹| 什么叫红颜知己| 阴历六月十五是什么日子| conch是什么牌子| 中国中铁是做什么的| 尿有泡泡是什么病| 极有家是什么意思| 泡椒是什么辣椒| 6月份怀孕预产期是什么时候| 膜性肾病什么意思| 预设是什么意思| 系带断裂有什么影响吗| 儒雅什么意思| 宣发是什么意思| 暗物质和暗能量是什么| 喝枸杞子泡水有什么好处和坏处| 一树梨花压海棠什么意思| 11月9日是什么星座| 女生下体瘙痒用什么药| 静脉血栓是什么症状| 斗鱼吃什么| 巳时是什么时辰| 熬夜吃什么水果好| 百度Jump to content

河北大城:产业结构调整助力农民增收致富

From Wikipedia, the free encyclopedia
百度 目前,国内只有18个城市制订了控烟条例,其他城市都在等待中央政府出台国家法规。

In the mathematical field of analysis, a well-known theorem describes the set of discontinuities of a monotone real-valued function of a real variable; all discontinuities of such a (monotone) function are necessarily jump discontinuities and there are at most countably many of them.

Usually, this theorem appears in literature without a name. It is called Froda's theorem in some recent works; in his 1929 dissertation, Alexandru Froda stated that the result was previously well-known and had provided his own elementary proof for the sake of convenience.[1] Prior work on discontinuities had already been discussed in the 1875 memoir of the French mathematician Jean Gaston Darboux.[2]

Definitions

[edit]

Denote the limit from the left by and denote the limit from the right by

If and exist and are finite then the difference is called the jump[3] of at

Consider a real-valued function of real variable defined in a neighborhood of a point If is discontinuous at the point then the discontinuity will be a removable discontinuity, or an essential discontinuity, or a jump discontinuity (also called a discontinuity of the first kind).[4] If the function is continuous at then the jump at is zero. Moreover, if is not continuous at the jump can be zero at if

Precise statement

[edit]

Let be a real-valued monotone function defined on an interval Then the set of discontinuities of the first kind is at most countable.

One can prove[5][3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form:

Let be a monotone function defined on an interval Then the set of discontinuities is at most countable.

Proofs

[edit]

This proof starts by proving the special case where the function's domain is a closed and bounded interval [6][7] The proof of the general case follows from this special case.

Proof when the domain is closed and bounded

[edit]

Two proofs of this special case are given.

Proof 1

[edit]

Let be an interval and let be a non-decreasing function (such as an increasing function). Then for any Let and let be points inside at which the jump of is greater or equal to :

For any so that Consequently, and hence

Since we have that the number of points at which the jump is greater than is finite (possibly even zero).

Define the following sets:

Each set is finite or the empty set. The union contains all points at which the jump is positive and hence contains all points of discontinuity. Since every is at most countable, their union is also at most countable.

If is non-increasing (or decreasing) then the proof is similar. This completes the proof of the special case where the function's domain is a closed and bounded interval.

Proof 2

[edit]

For a monotone function , let mean that is monotonically non-decreasing and let mean that is monotonically non-increasing. Let is a monotone function and let denote the set of all points in the domain of at which is discontinuous (which is necessarily a jump discontinuity).

Because has a jump discontinuity at so there exists some rational number that lies strictly in between (specifically, if then pick so that while if then pick so that holds).

It will now be shown that if are distinct, say with then If then implies so that If on the other hand then implies so that Either way,

Thus every is associated with a unique rational number (said differently, the map defined by is injective). Since is countable, the same must be true of

Proof of general case

[edit]

Suppose that the domain of (a monotone real-valued function) is equal to a union of countably many closed and bounded intervals; say its domain is (no requirements are placed on these closed and bounded intervals[a]). It follows from the special case proved above that for every index the restriction of to the interval has at most countably many discontinuities; denote this (countable) set of discontinuities by If has a discontinuity at a point in its domain then either is equal to an endpoint of one of these intervals (that is, ) or else there exists some index such that in which case must be a point of discontinuity for (that is, ). Thus the set of all points of at which is discontinuous is a subset of which is a countable set (because it is a union of countably many countable sets) so that its subset must also be countable (because every subset of a countable set is countable).

In particular, because every interval (including open intervals and half open/closed intervals) of real numbers can be written as a countable union of closed and bounded intervals, it follows that any monotone real-valued function defined on an interval has at most countable many discontinuities.

To make this argument more concrete, suppose that the domain of is an interval that is not closed and bounded (and hence by Heine–Borel theorem not compact). Then the interval can be written as a countable union of closed and bounded intervals with the property that any two consecutive intervals have an endpoint in common: If then where is a strictly decreasing sequence such that In a similar way if or if In any interval there are at most countable many points of discontinuity, and since a countable union of at most countable sets is at most countable, it follows that the set of all discontinuities is at most countable.

Jump functions

[edit]

Examples. Let x1 < x2 < x3 < ??? be a countable subset of the compact interval [a,b] and let μ1, μ2, μ3, ... be a positive sequence with finite sum. Set

where χA denotes the characteristic function of a compact interval A. Then f is a non-decreasing function on [a,b], which is continuous except for jump discontinuities at xn for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions.[8][9]

More generally, the analysis of monotone functions has been studied by many mathematicians, starting from Abel, Jordan and Darboux. Following Riesz & Sz.-Nagy (1990), replacing a function by its negative if necessary, only the case of non-negative non-decreasing functions has to be considered. The domain [a,b] can be finite or have ∞ or ?∞ as endpoints.

The main task is to construct monotone functions — generalising step functions — with discontinuities at a given denumerable set of points and with prescribed left and right discontinuities at each of these points. Let xn (n ≥ 1) lie in (a, b) and take λ1, λ2, λ3, ... and μ1, μ2, μ3, ... non-negative with finite sum and with λn + μn > 0 for each n. Define

for for

Then the jump function, or saltus-function, defined by

is non-decreasing on [a, b] and is continuous except for jump discontinuities at xn for n ≥ 1.[10][11][12][13]

To prove this, note that sup |fn| = λn + μn, so that Σ fn converges uniformly to f. Passing to the limit, it follows that

and

if x is not one of the xn's.[10]

Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties:[14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity xn; (3) satisfying the boundary condition f(a) = 0; and (4) having zero derivative almost everywhere.

Proof that a jump function has zero derivative almost everywhere.

Property (4) can be checked following Riesz & Sz.-Nagy (1990), Rubel (1963) and Komornik (2016). Without loss of generality, it can be assumed that f is a non-negative jump function defined on the compact [a,b], with discontinuities only in (a,b).

Note that an open set U of (a,b) is canonically the disjoint union of at most countably many open intervals Im; that allows the total length to be computed ?(U)= Σ ?(Im). Recall that a null set A is a subset such that, for any arbitrarily small ε' > 0, there is an open U containing A with ?(U) < ε'. A crucial property of length is that, if U and V are open in (a,b), then ?(U) + ?(V) = ?(UV) + ?(UV).[15] It implies immediately that the union of two null sets is null; and that a finite or countable set is null.[16][17]

Proposition 1. For c > 0 and a normalised non-negative jump function f, let Uc(f) be the set of points x such that

for some s, t with s < x < t. Then Uc(f) is open and has total length ?(Uc(f)) ≤ 4 c?1 (f(b) – f(a)).

Note that Uc(f) consists the points x where the slope of h is greater that c near x. By definition Uc(f) is an open subset of (a, b), so can be written as a disjoint union of at most countably many open intervals Ik = (ak, bk). Let Jk be an interval with closure in Ik and ?(Jk) = ?(Ik)/2. By compactness, there are finitely many open intervals of the form (s,t) covering the closure of Jk. On the other hand, it is elementary that, if three fixed bounded open intervals have a common point of intersection, then their union contains one of the three intervals: indeed just take the supremum and infimum points to identify the endpoints. As a result, the finite cover can be taken as adjacent open intervals (sk,1,tk,1), (sk,2,tk,2), ... only intersecting at consecutive intervals.[18] Hence

Finally sum both sides over k.[16][17]

Proposition 2. If f is a jump function, then f '(x) = 0 almost everywhere.

To prove this, define

a variant of the Dini derivative of f. It will suffice to prove that for any fixed c > 0, the Dini derivative satisfies Df(x) ≤ c almost everywhere, i.e. on a null set.

Choose ε > 0, arbitrarily small. Starting from the definition of the jump function f = Σ fn, write f = g + h with g = ΣnN fn and h = Σn>N fn where N ≥ 1. Thus g is a step function having only finitely many discontinuities at xn for nN and h is a non-negative jump function. It follows that Df = g' +Dh = Dh except at the N points of discontinuity of g. Choosing N sufficiently large so that Σn>N λn + μn < ε, it follows that h is a jump function such that h(b) ? h(a) < ε and Dhc off an open set with length less than 4ε/c.

By construction Dfc off an open set with length less than 4ε/c. Now set ε' = 4ε/c — then ε' and c are arbitrarily small and Dfc off an open set of length less than ε'. Thus Dfc almost everywhere. Since c could be taken arbitrarily small, Df and hence also f ' must vanish almost everywhere.[16][17]

As explained in Riesz & Sz.-Nagy (1990), every non-decreasing non-negative function F can be decomposed uniquely as a sum of a jump function f and a continuous monotone function g: the jump function f is constructed by using the jump data of the original monotone function F and it is easy to check that g = F ? f is continuous and monotone.[10]

See also

[edit]

Notes

[edit]
  1. ^ So for instance, these intervals need not be pairwise disjoint nor is it required that they intersect only at endpoints. It is even possible that for all

References

[edit]
  1. ^ Froda, Alexandre (3 December 1929). Sur la distribution des propriétés de voisinage des functions de variables réelles (PDF) (Thesis). Paris: Hermann. JFM 55.0742.02.
  2. ^ Jean Gaston Darboux, Mémoire sur les fonctions discontinues, Annales Scientifiques de l'école Normale Supérieure, 2-ème série, t. IV, 1875, Chap VI.
  3. ^ a b Nicolescu, Dinculeanu & Marcus 1971, p. 213.
  4. ^ Rudin 1964, Def. 4.26, pp. 81–82.
  5. ^ Rudin 1964, Corollary, p. 83.
  6. ^ Apostol 1957, pp. 162–3.
  7. ^ Hobson 1907, p. 245.
  8. ^ Apostol 1957.
  9. ^ Riesz & Sz.-Nagy 1990.
  10. ^ a b c Riesz & Sz.-Nagy 1990, pp. 13–15
  11. ^ Saks 1937.
  12. ^ Natanson 1955.
  13. ^ ?ojasiewicz 1988.
  14. ^ For more details, see
  15. ^ Burkill 1951, pp. 10?11.
  16. ^ a b c Rubel 1963
  17. ^ a b c Komornik 2016
  18. ^ This is a simple example of how Lebesgue covering dimension applies in one real dimension; see for example Edgar (2008).

Bibliography

[edit]
右肋骨疼是什么原因 以前没有狐臭为什么突然就有了 夏天为什么要吃姜 眼袋是什么 身体缺钠会有什么症状
吃什么可以止咳化痰 天麻长什么样子图片 浑身痒是什么原因 胃看什么科室 女性排卵期出血是什么原因
大量出汗是什么原因 消融是什么意思 胸前骨头疼是什么原因 半夏反什么药 胚胎和囊胚有什么区别
赤道2什么时候上映 blossom是什么意思 常吃洋葱有什么好处 破财消灾什么意思 为什么印度人叫阿三
巴雷特是什么hcv9jop5ns3r.cn 林冲到底属什么生肖的hcv9jop6ns0r.cn 肺囊肿是什么病严重吗hcv9jop4ns1r.cn 长期吃避孕药有什么副作用hcv8jop9ns0r.cn 黄芪泡水喝有什么作用hcv8jop2ns1r.cn
什么而去hcv7jop9ns6r.cn 吾日三省吾身是什么意思hcv8jop7ns6r.cn 早孕有什么反应hcv9jop0ns2r.cn 鼻炎会引起什么症状hcv9jop0ns5r.cn 蜱虫长什么样hcv9jop1ns9r.cn
桑葚泡酒有什么功效hcv8jop7ns9r.cn 淀粉酶高有什么危害hkuteam.com 前列腺肥大吃什么药效果最好hcv8jop3ns9r.cn mono是什么意思hcv8jop3ns0r.cn bmi是什么hcv9jop4ns7r.cn
孕初期吃什么对胎儿好hcv9jop2ns0r.cn 无水奶油是什么hcv7jop7ns0r.cn 什么水果含维c最多cj623037.com 手脚发胀是什么前兆hcv9jop5ns2r.cn 衣原体感染用什么药hcv9jop7ns5r.cn
百度