血小板减少会出现什么症状| 新茶是什么意思| 叶脉是什么| 小拇指和无名指发麻是什么原因| 为什么夏天容易拉肚子| 为什么有眼袋是什么原因引起的| 正三角形是什么| 胃出血大便是什么颜色| 霉菌感染用什么药最好| 球镜柱镜是什么意思| 杨梅酒喝了有什么好处和功效| 四月三日是什么星座| 什么逼人| 智齿长什么样子| 枸橼酸西地那非片有什么副作用| 稽留流产什么意思| 什么的小火车| 吃什么容易得胆结石| 人为什么做梦| 丑未戌三刑 会发生什么| 拉肚子吃什么药最好| 心口痛挂什么科| 无与伦比是什么意思| 什么是圆周率| 绞股蓝有什么作用| 为什么不能指彩虹| 浑身解数是什么意思| 属虎的脖子戴什么招财| 阑是什么意思| 喉咙痛上火吃什么药效果最好| 文爱 什么意思| 抑郁症是什么意思| 1999年出生的属什么| 睾丸隐痛什么原因| 执业医师是什么意思| 什么的树影| 不孕不育挂什么科| 呓语是什么意思| 手热脚热是什么原因| 羊是什么结构的字| 视黄醇结合蛋白是什么| 狗和什么属相相冲| 身体冒虚汗什么原因| 直肠给药对小孩身体有什么影响| 廿是什么意思| 嗓子有痰吃什么药| 口角炎用什么药膏| 残局是什么意思| 肾上腺素是什么| 生长激素分泌的高峰期是什么时候| 净高是什么意思| 清心寡欲是什么意思| 1999年五行属什么| 刀客是什么意思| 懦弱什么意思| 三叉戟是什么意思| 正月初七什么星座| 康斯坦丁是什么意思| 胶囊壳是什么原料做的| 贡高我慢是什么意思| 1946年属什么生肖| 脖子后面疼是什么原因| 草长莺飞是什么生肖| 皮尔卡丹属于什么档次| 哺乳期感冒了能吃什么药| 梦见邻居是什么意思| 肝区回声密集是什么意思| 肌酐高是什么病| 西地那非是什么药| 什么叫甲沟炎| 除了肠镜还有什么方法检查肠道| 竹马是什么意思| 鱼腥草破壁饮片有什么功效| 秋收冬藏是什么生肖| 营销号是什么| 嘴唇白是什么原因| 骨折是什么感觉| 梦见买袜子是什么意思| 什么蜂蜜好| 不惑之年什么意思| 胃胀气打嗝吃什么药| 为什么一热脸就特别红| 尿血什么原因| 软组织挫伤用什么药| 胃火旺盛吃什么药| 易栓症是什么病| 宝宝吐奶是什么原因引起的| 禅让制是什么意思| 聚首一堂是指什么生肖| 腿经常抽筋是什么原因| 三点水弘读什么| 摩羯座是什么象星座| 唐玄宗为什么叫唐明皇| 阳痿早泄用什么药| 日落是什么时辰| 迅雷不及掩耳之势是什么意思| 肾积水是什么原因| 什么是预科生| 肺心病是什么原因引起的| 梦见找鞋子是什么意思| 风湿因子高是什么原因引起的| 太平洋中间是什么| 血脂稠喝什么茶效果好| 世界上最深的湖是什么| 脱节是什么意思| 慢性炎伴鳞化是什么意思| 鉴黄师是什么职业| 年下恋是什么意思| 藜麦是什么东西| smart什么牌子| 晚生是什么意思| 什么的白云| 什么的摇篮| 枣什么时候成熟| 小饭桌是什么意思| 骨折吃什么好得快| 4月26日什么星座| 做梦梦到大蟒蛇是什么意思| 毛骨鱼是什么鱼| 杯弓蛇影是什么物理现象| 潜力是什么意思| baleno是什么牌子| 惊厥是什么病| newbee什么意思| 胃疼想吐恶心是什么原因| 英短蓝猫吃什么猫粮好| 摇滚是什么意思| 80年五行属什么| 冰箱什么牌子的好| 普外科是看什么病的| 什么样的树木| 4岁小孩流鼻血是什么原因| 蒂是什么意思| 1938年中国发生了什么| 情志是什么意思| 什么地生长| 42天产后复查都查什么| 荷叶茶有什么功效| 驻马店以前叫什么名字| 到底是什么意思| 白领是什么职业| 回南天是什么意思| 稀释是什么意思| 什么是同比| 手上起皮是什么原因| 沸去掉三点水念什么| 眉尾有痣代表什么| 肾病应该吃什么| vad是什么意思| 今年22岁属什么| 鸡蛋不能和什么一起吃| 湿气严重吃什么药好得快| 壅是什么意思| 6月19日是什么节日| 猫吃什么下奶最快最多| 伤口溃烂不愈合用什么药| 庶母是什么意思| 乳腺囊性增生是什么意思| 钱丢了预示着什么| 12月20日是什么星座| 例行是什么意思| 喝酒头疼吃什么药| 吃什么食物可以降低胆固醇| 吃什么吐什么| 四月是什么星座| 农历8月是什么月| 嘴角上方有痣代表什么| 茵陈是什么植物| 红细胞偏高是什么原因| 6月21号是什么日子| 墨鱼和鱿鱼有什么区别| 肝气虚吃什么中成药| 男人尿道炎吃什么药最好| m是什么| 五黄煞是什么意思| 瘟疫是什么意思| 血尿是什么颜色| 1954年属什么生肖| 楞严经讲的是什么| 黄精什么人不能吃| 什么雪糕最好吃| 急性胰腺炎是什么病| 羽字五行属什么| 柔顺和拉直有什么区别| 推什么出什么| burgundy是什么颜色| 心电图是什么科室| b族维生素什么时候吃效果最好| 96年属什么的| 脚踝肿挂什么科| 情系是什么意思| 甘油三酯高是什么原因| 今年闰六月有什么说法| 蛇信子是什么| 前列腺增生吃什么药效果最好| 寿司的米饭是什么米| 世界上最小的花是什么花| 出口伤人是什么生肖| 尿胆红素高是什么原因| 触霉头是什么意思| 吃完紧急避孕药不能吃什么| 李世民和武则天什么关系| ggdb是什么牌子| 菠萝蜜是什么季节的水果| 耳鸣什么原因引起的| 为什么得甲亢| 老放屁是什么情况| 开窍是什么意思| 林冲是什么生肖| 麻批是什么意思| 麒麟飞到北极会变成什么| 男性霉菌感染用什么药| 人流后什么叫重体力活| 林俊杰什么时候出道的| 小孩掉头发是什么原因| 长期手淫会有什么危害| 无缘无故流鼻血是什么原因| 胃胀胃不消化吃什么药| 辰代表什么意思| 马飞是什么药| 威士忌是什么酒| 干邑是什么意思| 鼻炎是什么症状| 冬瓜炖什么好吃| 工资5k是什么意思| 衣原体感染是什么病| gbs筛查是什么| 八月底什么星座| 上天是什么意思| 胃粘膜糜烂吃什么药| 你说什么| feno是什么检查| 克隆恩病是什么| 西洋参可以和什么一起泡水喝| 假菌丝是什么意思| homie是什么意思| 多种维生素什么牌子的效果最好| 怕吹空调是什么原因| 玄府指的是什么| 前壁后壁有什么区别| 8月24日是什么星座| 玻璃水是干什么用的| 整天犯困没精神想睡觉是什么原因| 什么茶叶能减肥刮油脂肪| 叶酸片有什么功效| 须眉是什么意思| 腋下黑是什么原因| 红皮鸡蛋和白皮鸡蛋有什么区别| 吃止疼药有什么副作用| 糖尿病可以吃什么菜| s是什么意思| 喉炎吃什么药效果最好| 戊土是什么意思| pin是什么意思啊| 鞠躬是什么意思| 太阳一晒脸就红是什么原因| 吃什么有奶| 腋下副乳有什么危害吗| 梦见旋风是什么预兆| 角化棘皮瘤是什么病| 农历7月20日是什么星座| 手术后吃什么补品好| 夹生饭是什么意思| 口腔医学技术可以考什么证| 百度Jump to content

青海禁毒公益宣传万里行(完整版)

From Wikipedia, the free encyclopedia
百度 “部分省市已开展相关服务,例如广东的‘缤纷微天气’、福建的‘知天气’APP,公众只需下载程序并输入位置,就能享受‘私人订制’的天气预报。

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

Definition

[edit]

Given , a representation of on a finite-dimensional complex vector space , where is the Galois group of the finite extension of number fields, the Artin -function is defined by an Euler product. For each prime ideal in 's ring of integers, there is an Euler factor, which is easiest to define in the case where is unramified in (true for almost all ). In that case, the Frobenius element is defined as a conjugacy class in . Therefore, the characteristic polynomial of is well-defined. The Euler factor for is a slight modification of the characteristic polynomial, equally well-defined,

as rational function in t, evaluated at , with a complex variable in the usual Riemann zeta function notation. (Here N is the field norm of an ideal.)

When is ramified, and I is the inertia group which is a subgroup of G, a similar construction is applied, but to the subspace of V fixed (pointwise) by I.[note 1]

The Artin L-function is then the infinite product over all prime ideals of these factors. As Artin reciprocity shows, when G is an abelian group these L-functions have a second description (as Dirichlet L-functions when K is the rational number field, and as Hecke L-functions in general). Novelty comes in with non-abelian G and their representations.

One application is to give factorisations of Dedekind zeta-functions, for example in the case of a number field that is Galois over the rational numbers. In accordance with the decomposition of the regular representation into irreducible representations, such a zeta-function splits into a product of Artin L-functions, for each irreducible representation of G. For example, the simplest case is when G is the symmetric group on three letters. Since G has an irreducible representation of degree 2, an Artin L-function for such a representation occurs, squared, in the factorisation of the Dedekind zeta-function for such a number field, in a product with the Riemann zeta-function (for the trivial representation) and an L-function of Dirichlet's type for the signature representation.

More precisely for a Galois extension of degree n, the factorization

follows from

where is the multiplicity of the irreducible representation in the regular representation, f is the order of and n is replaced by n/e at the ramified primes.

Since characters are an orthonormal basis of the class functions, after showing some analytic properties of the we obtain the Chebotarev density theorem as a generalization of Dirichlet's theorem on arithmetic progressions.

Functional equation

[edit]

Artin L-functions satisfy a functional equation. The function is related in its values to , where denotes the complex conjugate representation. More precisely L is replaced by , which is L multiplied by certain gamma factors, and then there is an equation of meromorphic functions

,

with a certain complex number W(ρ) of absolute value 1. It is the Artin root number. It has been studied deeply with respect to two types of properties. Firstly Robert Langlands and Pierre Deligne established a factorisation into Langlands–Deligne local constants; this is significant in relation to conjectural relationships to automorphic representations. Also the case of ρ and ρ* being equivalent representations is exactly the one in which the functional equation has the same L-function on each side. It is, algebraically speaking, the case when ρ is a real representation or quaternionic representation. The Artin root number is, then, either +1 or ?1. The question of which sign occurs is linked to Galois module theory.[1]

The Artin conjecture

[edit]

The Artin conjecture on Artin L-functions (also known as Artin's holomorphy conjecture) states that the Artin L-function of a non-trivial irreducible representation ρ is analytic in the whole complex plane.[2]

This is known for one-dimensional representations, the L-functions being then associated to Hecke characters — and in particular for Dirichlet L-functions.[2] More generally Artin showed that the Artin conjecture is true for all representations induced from 1-dimensional representations. If the Galois group is supersolvable or more generally monomial, then all representations are of this form so the Artin conjecture holds.

André Weil proved the Artin conjecture in the case of function fields.

Two-dimensional representations are classified by the nature of the image subgroup: it may be cyclic, dihedral, tetrahedral, octahedral, or icosahedral. The Artin conjecture for the cyclic or dihedral case follows easily from Erich Hecke's work. Langlands used the base change lifting to prove the tetrahedral case, and Jerrold Tunnell extended his work to cover the octahedral case;[3] Andrew Wiles used these cases in his proof of the Modularity conjecture. Richard Taylor and others have made some progress on the (non-solvable) icosahedral case; this is an active area of research. The Artin conjecture for odd, irreducible, two-dimensional representations follows from the proof of Serre's modularity conjecture, regardless of projective image subgroup.

Brauer's theorem on induced characters implies that all Artin L-functions are products of positive and negative integral powers of Hecke L-functions, and are therefore meromorphic in the whole complex plane.

Langlands (1970) pointed out that the Artin conjecture follows from strong enough results from the Langlands philosophy, relating to the L-functions associated to automorphic representations for GL(n) for all . More precisely, the Langlands conjectures associate an automorphic representation of the adelic group GLn(AQ) to every n-dimensional irreducible representation of the Galois group, which is a cuspidal representation if the Galois representation is irreducible, such that the Artin L-function of the Galois representation is the same as the automorphic L-function of the automorphic representation. The Artin conjecture then follows immediately from the known fact that the L-functions of cuspidal automorphic representations are holomorphic. This was one of the major motivations for Langlands' work.

The Dedekind conjecture

[edit]

A weaker conjecture (sometimes known as Dedekind conjecture) states that if M/K is an extension of number fields, then the quotient of their Dedekind zeta functions is entire.

The Aramata-Brauer theorem states that the conjecture holds if M/K is Galois.

More generally, let N be the Galois closure of M over K, and G the Galois group of N/K. The quotient is equal to the Artin L-functions associated to the natural representation associated to the action of G on the K-invariants complex embedding of M. Thus the Artin conjecture implies the Dedekind conjecture.

The conjecture was proven when G is a solvable group, independently by Koji Uchida and R. W. van der Waall in 1975.[4]

See also

[edit]

Notes

[edit]
  1. ^ It is arguably more correct to think instead about the coinvariants, the largest quotient space fixed by I, rather than the invariants, but the result here will be the same. Cf. Hasse–Weil L-function for a similar situation.

References

[edit]

Bibliography

[edit]
  • Artin, E. (1923). "über eine neue Art von L Reihen". Hamb. Math. Abh. 3. Reprinted in his collected works, ISBN 0-387-90686-X. English translation in Artin L-Functions: A Historical Approach by N. Snyder.
  • Artin, Emil (1930), "Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren.", Abhandlungen aus dem Mathematischen Seminar der Universit?t Hamburg (in German), 8: 292–306, doi:10.1007/BF02941010, JFM 56.0173.02, S2CID 120987633
  • Tunnell, Jerrold (1981). "Artin's conjecture for representations of octahedral type". Bull. Amer. Math. Soc. N. S. 5 (2): 173–175. doi:10.1090/S0273-0979-1981-14936-3.
  • Gelbart, Stephen (1977). "Automorphic forms and Artin's conjecture". Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn., Bonn, 1976). Lecture Notes in Math. Vol. 627. Berlin: Springer. pp. 241–276.
  • Langlands, Robert (1967). "Letter to Prof. Weil".
  • Langlands, Robert P. (1970). "Problems in the theory of automorphic forms". Lectures in modern analysis and applications, III. Lecture Notes in Math. Vol. 170. Berlin, New York: Springer-Verlag. pp. 18–61. doi:10.1007/BFb0079065. ISBN 978-3-540-05284-5. MR 0302614.
  • Martinet, J. (1977). "Character theory and Artin L-functions". In Fr?hlich, A. (ed.). Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975. Academic Press. pp. 1–87. ISBN 0-12-268960-7. Zbl 0359.12015.
  • Perlis, R. (2001) [1994], "Artin root numbers", Encyclopedia of Mathematics, EMS Press
  • Prasad, Dipendra; Yogananda, C. S. (2000). "A Report on Artin's Holomorphy Conjecture". In Bambah, R. P.; Dumir, V. C.; Hans-Gill, R. J. (eds.). Number Theory (PDF). Birkh?user Basel. pp. 301–314. doi:10.1007/978-3-0348-7023-8_16. ISBN 978-3-0348-7023-8.
警察和公安有什么区别 7月份什么星座 红黑相间的蛇是什么蛇 骨密度增高是什么意思 什么是石斛
再生障碍性贫血是什么病 苏字五行属什么 抽脂手术对身体有什么副作用 什么症状吃柏子养心丸 小三阳是什么病
老鼠爱吃什么 休闲裤配什么鞋子好看 喜用神什么意思 右手心痒是什么预兆 小儿抽搐是什么原因引起的
乙肝大三阳是什么意思 多多益善的益是什么意思 什么是元气 脚为什么会痒越抓越痒 hrd是什么
怀孕生化是什么意思hcv9jop2ns0r.cn 绿豆的功效与作用是什么hcv9jop6ns9r.cn 体重指数是什么意思hlguo.com 梦见蛀牙掉是什么预兆hcv8jop3ns9r.cn 有点拉肚子吃什么药sscsqa.com
西瓜有什么营养hcv9jop6ns7r.cn 出品人是干什么的hcv8jop5ns1r.cn IOM是什么意思fenrenren.com 621什么星座fenrenren.com 迁徙是什么意思wuhaiwuya.com
天天喝酒会得什么病hcv7jop6ns7r.cn 张扬是什么意思hcv7jop5ns6r.cn 茶色尿是什么原因引起的hcv9jop6ns3r.cn 胰腺炎用什么药hcv9jop5ns4r.cn 博文是什么意思hcv8jop4ns7r.cn
连长是什么军衔hcv8jop8ns6r.cn 流产期间吃什么好hcv7jop7ns0r.cn 欲生欲死是什么意思hcv7jop4ns7r.cn 无后为大是什么意思sscsqa.com 全身皮肤瘙痒是什么原因hcv8jop3ns8r.cn
百度