十一月一号是什么星座| 风湿关节炎吃什么药| 缠足是什么时候开始的| 红眼病什么症状| 为什么腋下老是出汗| 二氧化钛是什么东西| 233是什么意思啊| 美人尖是什么| 沸点是什么意思| quake是什么意思| 蚊子长什么样| pr是什么意思| 淋巴组织增生是什么意思| 银渐层是什么品种| 一代宗师是什么意思| 处女座的幸运色是什么颜色| 塞来昔布是什么药| 母慈子孝下一句是什么| 田七煲汤配什么材料| 泡饭为什么对胃不好| 子宫肌瘤有什么症状表现| 一点是什么时辰| 什么时候吃苹果最好| 隐翅虫怕什么| 看幽门螺旋杆菌挂什么科| 什么牌子的冰箱好| 回头是岸是什么意思| 诺五行属什么| 哀鸿遍野是什么意思| 硬度不够吃什么中成药| 什么是卫星| 为什么手脚老是出汗| 盐酸安罗替尼胶囊主要治疗什么| 真丝香云纱是什么面料| 回不到我们的从前是什么歌| 悲催是什么意思| 阴沟肠杆菌是什么病| 同仁什么意思| 沄字五行属什么| s925是什么意思| 高考报名号是什么| 腰间盘突出吃什么药好| 肠梗阻是什么| 吃什么不会长胖| 小孩掉头发是什么原因引起的| 晨勃是什么意思| 20度穿什么衣服| 吴承恩是什么朝代的| 意象是什么| 第一次同房要注意什么| 产检建档需要什么资料| 踮脚有什么好处| 挽留是什么意思| penguin是什么意思| 吃了避孕药有什么副作用| 医院建档是什么意思| 智商105是什么水平| 折煞是什么意思| 头皮屑多是什么原因怎么去除| 孕妇贫血吃什么药| 什么叫血氧| 单核细胞百分比偏高什么原因| 59岁属什么| 紫菜和海带有什么区别| 什么是六道轮回| 失眠吃什么食物最有效| 冰恋是什么| 人生只剩归途什么意思| 睾丸变小是什么原因| 怀孕喝什么汤最有营养| 什么已经什么| 吃得苦中苦方为人上人是什么意思| 痛风是什么感觉| 走之旁与什么有关| 王一博是什么星座| 梦见捡到钱是什么征兆| 尿素测定是查什么| 阿奇霉素主治什么病| 老鼠喜欢吃什么| 李荣浩什么学历| 鱼周念什么| 怀孕分泌物是什么样的| 保妇康栓是治疗什么的| 阴茎勃起不硬吃什么| 胎盘低置是什么原因造成的| 为什么男人喜欢女人的胸| 诗五行属性是什么| 胎动突然减少是什么原因| 什么是芝士| 七月份有什么节日吗| 圆滑是什么意思| 狗为什么吃屎| 小便有泡沫是什么情况| hpv16是什么意思| 什么什么鼎沸| mo是什么元素| 怎么知道自己是什么血型| b币有什么用| 过什么不什么| 神经衰弱是什么| ckd是什么意思| 女生胸疼是什么原因| 吃什么能排出胆结石| 抛砖引玉什么意思| 尿道炎吃什么药| 翌字五行属什么| 京东什么时候优惠最大| 乳糖不耐受不能吃什么| 颈椎增生吃什么药| 红细胞高是什么原因| 禅修是什么意思| 尔加玉读什么| 弹颏是什么意思| 吃榴莲补什么| 大暑什么时候| 感觉不到饿是什么原因| 射手座是什么性格| 腿血栓什么症状| 百日咳吃什么药| 什么叫尊重| 下午6点是什么时辰| 肝血虚吃什么中成药| 金刚是什么意思| 熬夜是什么意思| 什么天什么什么| 喜形于色是什么意思| 什么品牌的卫浴好| 西洋菜俗称叫什么| 佩戴朱砂有什么好处| 腹膜后是什么位置| 如虎添翼是什么生肖| 毛骨悚然是什么意思| hhv是什么病毒| 盆腔积液是什么症状表现| 梦见蘑菇是什么预兆| 血糖高适合吃什么主食| 牙齿抛光是什么意思| 公立医院是什么意思| 桑榆未晚是什么意思| 微信上面有个耳朵是什么意思| 淋病是什么病| pyq是什么| 窦炎症是什么病| 血清铁是什么意思| 男头发稀少适合什么发型| 激素六项什么时候查最准| 女生的隐私部位长什么样| 脚冰凉是什么原因| 定妆用什么好| 讳莫如深什么意思| 男人喜欢什么样的女人| 飞字五行属什么| 驳斥是什么意思| 乳腺结节有什么症状| 延时吃什么药| 金粉是什么| 手麻是什么病的预兆| 老年人腿疼是什么原因引起的| 数字3五行属什么| 最新病毒感染什么症状| 贫血喝什么口服液最好| 什么是野鸡大学| spa按摩是什么意思| 舌头疼挂什么科| 忽悠什么意思| 奶奶过生日送什么礼物| 画蛇添足告诉我们什么道理| 下面长痘痘是什么原因| 麦粒肿吃什么药| 女人喝什么茶好| 多发性脂肪瘤是什么原因造成的| 诸葛亮为什么气死周瑜| def是什么意思| 挺拔的意思是什么| 检查有没有怀孕挂什么科| 怀孕什么时候有反应| 时光荏苒的意思是什么| cto是什么意思| 欲仙欲死是什么意思| 下巴长闭口是什么原因| 桦树茸有什么功效| 吃什么才能长胖| 生蚝有什么功效与作用| 什么是磁共振| 脱发严重应该去医院挂什么科| 肺和大肠相表里是什么意思| 龙和什么生肖相冲| 肾小球有什么作用| 什么是化学| 瞑眩反应是什么意思| 怀女孩有什么征兆| 为什么正骨后几天越来越疼| 黑白颠倒是什么意思| 阳光照耀是什么意思| 4月4日是什么日子| 1.29是什么星座| 血小板压积偏低是什么意思| 心脏早搏是什么原因造成的| 什么是梭织面料| tfboys什么意思| 什么样的人容易得心梗| 头伏饺子二伏面三伏吃什么| 背锅侠是什么意思| 启攒是什么意思| 宜家宜室什么意思| 7月1日是什么节| 针对是什么意思| 城市的夜晚霓虹灯璀璨是什么歌| 头晕恶心吃什么药| 低温烫伤是什么意思| 孕早期生气对胎儿有什么影响| 下午1点到3点是什么时辰| ras医学上是什么意思| 喉软骨发育不良有什么症状| 项链折了意味着什么| 姐姐家的孩子叫什么| 骨裂吃什么药| 草字头加西念什么| 13太保是什么意思| 感冒有黄痰是什么原因| 淋巴结有什么症状| 老虎属于什么科| 脂肪肝吃什么食物| 肝胆挂什么科| 918是什么意思| 甲状腺结节什么东西不能吃| 梭织是什么意思| 主心骨是什么意思| 漳平水仙茶属于什么茶| 豹子号是什么意思| 吃完虾不能吃什么水果| 一把把什么| 知行合一什么意思| 果可以加什么偏旁| 为什么会血热| 5月1日什么星座| ncs是什么意思| 白羊座后面是什么星座| 腹水是什么病| 嘴唇紫黑是什么原因| 搭桥是什么意思| 轰趴是什么意思| 什么水最解渴| 血液是什么组织| 为什么不开朱元璋的墓| 甲沟炎涂什么药膏| 什么家| 氨咖黄敏胶囊是什么药| 冠状动脉肌桥是什么病| 辟加木念什么| 叶黄素有什么功效| 属虎什么命| 沉甸甸的爱是什么意思| 谷草转氨酶偏低是什么原因| 月经期间头疼是什么原因| ipa啤酒是指什么| 小孩子发烧手脚冰凉是什么原因| 西瓜和什么食物相克| 农历六月十四是什么日子| 吃什么对卵巢好| 什么有成什么| 肺部有阴影是什么原因| 支气管炎吃什么药好得快| 爱理不理是什么意思| 百度Jump to content

清肺热用什么泡水喝比较好

From Wikipedia, the free encyclopedia
百度 1、价格高的楼盘,网签要分散要放缓,以前一个项目一个月就能网签完毕,现在不行,你的价格太高了,网签只能放缓,否则高价盘集中网签,平均价格一下子就上去了。

In crystallography, polymorphism is the phenomenon where a compound or element can crystallize into more than one crystal structure.

The preceding definition has evolved over many years and is still under discussion today.[1][2][3] Discussion of the defining characteristics of polymorphism involves distinguishing among types of transitions and structural changes occurring in polymorphism versus those in other phenomena.

Overview

[edit]

Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."[4] Additionally, Walter McCrone described the phases in polymorphic matter as "different in crystal structure but identical in the liquid or vapor states." McCrone also defines a polymorph as "a crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state."[5][6] These defining facts imply that polymorphism involves changes in physical properties but cannot include chemical change. Some early definitions do not make this distinction.

Eliminating chemical change from those changes permissible during a polymorphic transition delineates polymorphism. For example, isomerization can often lead to polymorphic transitions. However, tautomerism (dynamic isomerization) leads to chemical change, not polymorphism.[1] As well, allotropy of elements and polymorphism have been linked historically. However, allotropes of an element are not always polymorphs. A common example is the allotropes of carbon, which include graphite, diamond, and londsdaleite. While all three forms are allotropes, graphite is not a polymorph of diamond and londsdaleite. Isomerization and allotropy are only two of the phenomena linked to polymorphism. For additional information about identifying polymorphism and distinguishing it from other phenomena, see the review by Brog et al.[2]

It is also useful to note that materials with two polymorphic phases can be called dimorphic, those with three polymorphic phases, trimorphic, etc.[7]

Polymorphism is of practical relevance to pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives.

Detection

[edit]

Experimental methods

[edit]

Early records of the discovery of polymorphism credit Eilhard Mitscherlich and J?ns Jacob Berzelius for their studies of phosphates and arsenates in the early 1800s. The studies involved measuring the interfacial angles of the crystals to show that chemically identical salts could have two different forms. Mitscherlich originally called this discovery isomorphism.[8] The measurement of crystal density was also used by Wilhelm Ostwald and expressed in Ostwald's Ratio.[9]

The development of the microscope enhanced observations of polymorphism and aided Moritz Ludwig Frankenheim's studies in the 1830s. He was able to demonstrate methods to induce crystal phase changes and formally summarized his findings on the nature of polymorphism. Soon after, the more sophisticated polarized light microscope came into use, and it provided better visualization of crystalline phases allowing crystallographers to distinguish between different polymorphs. The hot stage was invented and fitted to a polarized light microscope by Otto Lehmann in about 1877. This invention helped crystallographers determine melting points and observe polymorphic transitions.[8]

While the use of hot stage microscopes continued throughout the 1900s, thermal methods also became commonly used to observe the heat flow that occurs during phase changes such as melting and polymorphic transitions. One such technique, differential scanning calorimetry (DSC), continues to be used for determining the enthalpy of polymorphic transitions.[8]

In the 20th century, X-ray crystallography became commonly used for studying the crystal structure of polymorphs. Both single crystal x-ray diffraction and powder x-ray diffraction techniques are used to obtain measurements of the crystal unit cell. Each polymorph of a compound has a unique crystal structure. As a result, different polymorphs will produce different x-ray diffraction patterns.[8]

Vibrational spectroscopic methods came into use for investigating polymorphism in the second half of the twentieth century and have become more commonly used as optical, computer, and semiconductor technologies improved. These techniques include infrared (IR) spectroscopy, terahertz spectroscopy and Raman spectroscopy. Mid-frequency IR and Raman spectroscopies are sensitive to changes in hydrogen bonding patterns. Such changes can subsequently be related to structural differences. Additionally, terahertz and low frequency Raman spectroscopies reveal vibrational modes resulting from intermolecular interactions in crystalline solids. Again, these vibrational modes are related to crystal structure and can be used to uncover differences in 3-dimensional structure among polymorphs.[10]

Computational methods

[edit]

Computational chemistry may be used in combination with vibrational spectroscopy techniques to understand the origins of vibrations within crystals.[10] The combination of techniques provides detailed information about crystal structures, similar to what can be achieved with x-ray crystallography. In addition to using computational methods for enhancing the understanding of spectroscopic data, the latest development in identifying polymorphism in crystals is the field of crystal structure prediction. This technique uses computational chemistry to model the formation of crystals and predict the existence of specific polymorphs of a compound before they have been observed experimentally by scientists.[11][12]

Examples

[edit]

Many compounds exhibit polymorphism. It has been claimed that "every compound has different polymorphic forms, and that, in general, the number of forms known for a given compound is proportional to the time and money spent in research on that compound."[13][5][14]

Organic compounds

[edit]

Benzamide

[edit]

The phenomenon was discovered in 1832 by Friedrich W?hler and Justus von Liebig. They observed that the silky needles of freshly crystallized benzamide slowly converted to rhombic crystals.[15] Present-day analysis[16] identifies three polymorphs for benzamide: the least stable one, formed by flash cooling, is the orthorhombic form II. This type is followed by the monoclinic form III (observed by W?hler/Liebig). The most stable form is monoclinic form I. The hydrogen bonding mechanisms are the same for all three phases; however, they differ strongly in their pi-pi interactions.

Maleic acid

[edit]

In 2006 a new polymorph of maleic acid was discovered, 124 years after the first crystal form was studied. Maleic acid is manufactured on an industrial scale in the chemical industry. It forms salt found in medicine. The new crystal type is produced when a co-crystal of caffeine and maleic acid (2:1) is dissolved in chloroform and when the solvent is allowed to evaporate slowly. Whereas form I has monoclinic space group P21/c, the new form has space group Pc. Both polymorphs consist of sheets of molecules connected through hydrogen bonding of the carboxylic acid groups: in form I, the sheets alternate with respect of the net dipole moment, while in form II, the sheets are oriented in the same direction.[17]

1,3,5-Trinitrobenzene

[edit]

After 125 years of study, 1,3,5-trinitrobenzene yielded a second polymorph. The usual form has the space group Pbca, but in 2004, a second polymorph was obtained in the space group Pca21 when the compound was crystallised in the presence of an additive, trisindane. This experiment shows that additives can induce the appearance of polymorphic forms.[18]

Other organic compounds

[edit]

Acridine has been obtained as eight polymorphs[19] and aripiprazole has nine.[20] The record for the largest number of well-characterised polymorphs is held by a compound known as ROY.[21][22] Glycine crystallizes as both monoclinic and hexagonal crystals. Polymorphism in organic compounds is often the result of conformational polymorphism.[23]

Inorganic matter

[edit]

Elements

[edit]

Elements including metals may exhibit polymorphism. Allotropy is the term used when describing elements having different forms and is used commonly in the field of metallurgy. Some (but not all) allotropes are also polymorphs. For example, iron has three allotropes that are also polymorphs. Alpha-iron, which exists at room temperature, has a bcc form. Above 910 degrees gamma-iron exists, which has a fcc form. Above 1390 degrees delta-iron exists with a bcc form.[24]

Another metallic example is tin, which has two allotropes that are also polymorphs. At room temperature, beta-tin exists as a white tetragonal form. When cooled below 13.2 degrees, alpha-tin forms which is gray in color and has a cubic diamond form.[24]

A classic example of a nonmetal that exhibits polymorphism is carbon. Carbon has many allotropes, including graphite, diamond, and londsdaleite. However, these are not all polymorphs of each other. Graphite is not a polymorph of diamond and londsdaleite, since it is chemically distinct, having sp2 hybridized bonding. Diamond and londsdaleite are chemically identical, both having sp3 hybridized bonding, and they differ only in their crystal structures, making them polymorphs. Additionally, graphite has two polymorphs, a hexagonal (alpha) form and a rhombohedral (beta) form.[24]

Binary metal oxides

[edit]

Polymorphism in binary metal oxides has attracted much attention because these materials are of significant economic value. One set of famous examples have the composition SiO2, which form many polymorphs. Important ones include: α-quartz, β-quartz, tridymite, cristobalite, moganite, coesite, and stishovite.[25] [26]

Metal oxides Phase Conditions of P and T Structure/Space Group
CrO2 α phase Ambient conditions Cl2-type Orthorhombic
RT and 12±3 GPa
Cr2O3 Corundum phase Ambient conditions Corundum-type Rhombohedral (R3c)
High pressure phase RT and 35 GPa Rh2O3-II type
Fe2O3 α phase Ambient conditions Corundum-type Rhombohedral (R3c)
β phase Below 773 K Body-centered cubic (Ia3)
γ phase Up to 933 K Cubic spinel structure (Fd3m)
ε phase -- Rhombic (Pna21)
Bi2O3 α phase Ambient conditions Monoclinic (P21/c)
β phase 603-923 K and 1 atm Tetragonal
γ phase 773-912 K or RT and 1 atm Body-centered cubic
δ phase 912-1097 K and 1 atm FCC (Fm3m)
In2O3 Bixbyite-type phase Ambient conditions Cubic (Ia3)
Corundum-type 15-25 GPa at 1273 K Corundum-type Hexagonal (R3c)
Rh2O3(II)-type 100 GPa and 1000 K Orthorhombic
Al2O3 α phase Ambient conditions Corundum-type Trigonal (R3c)
γ phase 773 K and 1 atm Cubic (Fd3m)
SnO2 α phase Ambient conditions Rutile-type Tetragonal (P42/mnm)
CaCl2-type phase 15 KBar at 1073 K Orthorhombic, CaCl2-type (Pnnm)
α-PbO2-type Above 18 KBar α-PbO2-type (Pbcn)
TiO2 Rutile Equilibrium phase Rutile-type Tetragonal
Anatase Metastable phase (Not stable)[27] Tetragonal (I41/amd)
Brookite Metastable phase (Not stable)[27] Orthorhombic (Pcab)
ZrO2 Monoclinic phase Ambient conditions Monoclinic (P21/c)
Tetragonal phase Above 1443 K Tetragonal (P42/nmc)
Fluorite-type phase Above 2643 K Cubic (Fm3m)
MoO3 α phase 553-673 K & 1 atm Orthorhombic (Pbnm)
β phase 553-673 K & 1 atm Monoclinic
h phase High-pressure and high-temperature phase Hexagonal (P6a/m or P6a)
MoO3-II 60 kbar and 973 K Monoclinic
WO3 ε phase Up to 220 K Monoclinic (Pc)
δ phase 220-300 K Triclinic (P1)
γ phase 300-623 K Monoclinic (P21/n)
β phase 623-900 K Orthorhombic (Pnma)
α phase Above 900 K Tetragonal (P4/ncc)

Other inorganic compounds

[edit]

A classical example of polymorphism is the pair of minerals calcite, which is rhombohedral, and aragonite, which is orthorhombic. Both are forms of calcium carbonate.[24] A third form of calcium carbonate is vaterite, which is hexagonal and relatively unstable.[28]

Calcite (on left) and Aragonite (on right), two forms of calcium carbonate. Note: the colors are from impurities.

β-HgS precipitates as a black solid when Hg(II) salts are treated with H2S. With gentle heating of the slurry, the black polymorph converts to the red form.[29]

Factors affecting polymorphism

[edit]

According to Ostwald's rule, usually less stable polymorphs crystallize before the stable form. The concept hinges on the idea that unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. The founding case of fibrous vs rhombic benzamide illustrates the case. Another example is provided by two polymorphs of titanium dioxide.[27] Nevertheless, there are known systems, such as metacetamol, where only narrow cooling rate favors obtaining metastable form II.[30]

Polymorphs have disparate stabilities. Some convert rapidly at room (or any) temperature. Most polymorphs of organic molecules only differ by a few kJ/mol in lattice energy. Approximately 50% of known polymorph pairs differ by less than 2 kJ/mol and stability differences of more than 10 kJ/mol are rare.[31] Polymorph stability may change upon temperature[32][33][34] or pressure.[35][36] Importantly, structural and thermodynamic stability are different. Thermodynamic stability may be studied using experimental or computational methods.[37][38]

Polymorphism is affected by the details of crystallisation. The solvent in all respects affects the nature of the polymorph, including concentration, other components of the solvent, i.e., species that inhibiting or promote certain growth patterns.[39] A decisive factor is often the temperature of the solvent from which crystallisation is carried out.[40]

Metastable polymorphs are not always reproducibly obtained, leading to cases of "disappearing polymorphs", with usually negative implications on law and business.[13][11][41]

In pharmaceuticals

[edit]

Approximately 37% or more of organic compounds exist as more than one polymorph.[42] The existence of polymorphs has legal implications as drugs receive regulatory approval and are granted patents for only a single polymorph. In a classic patent dispute, the GlaxoSmithKline defended its patent for the Type II polymorph of the active ingredient in Zantac against competitors while that of the Type I polymorph had already expired.[43] Polymorphism in drugs can also have direct medical implications since dissolution rates depend on the polymorph. The known cases up to 2015 are discussed in a review article by Bu?ar, Lancaster, and Bernstein.[11]

Dibenzoxazepines

[edit]

Clozapine exists in 4 forms compared to 60 forms for olanzapine. .[44]

Posaconazole

[edit]

The original formulations licensed as Noxafil were formulated utilising form I of posaconazole. The discovery of polymorphs of posaconazole increased rapidly and resulted in much research in crystallography of posaconazole. A methanol solvate and a 1,4-dioxane co-crystal were added to the Cambridge Structural Database (CSD).[45]

Ritonavir

[edit]

The antiviral drug ritonavir exists as two polymorphs, which differ greatly in efficacy. Such issues were solved by reformulating the medicine into gelcaps and tablets, rather than the original capsules.[46]

Aspirin

[edit]

One polymorph ("Form I") of aspirin is common.[11] "Form II" was reported in 2005,[47][48] found after attempted co-crystallization of aspirin and levetiracetam from hot acetonitrile.

In form I, pairs of aspirin molecules form centrosymmetric dimers through the acetyl groups with the (acidic) methyl proton to carbonyl hydrogen bonds. In form II, each aspirin molecule forms the same hydrogen bonds, but with two neighbouring molecules instead of one. With respect to the hydrogen bonds formed by the carboxylic acid groups, both polymorphs form identical dimer structures. The aspirin polymorphs contain identical 2-dimensional sections and are therefore more precisely described as polytypes.[49]

Pure Form II aspirin could be prepared by seeding the batch with aspirin anhydrate in 15% weight.[11]

Paracetamol

[edit]

Paracetamol powder has poor compression properties, which poses difficulty in making tablets. A second polymorph was found with more suitable compressive properties.[50]

Cortisone acetate

[edit]

Cortisone acetate exists in at least five different polymorphs, four of which are unstable in water and change to a stable form.

Carbamazepine

[edit]

Carbamazepine, estrogen, paroxetine,[51] and chloramphenicol also show polymorphism.

Pyrazinamide

[edit]

Pyrazinamide has at least 4 polymorphs.[52] All of them transforms to stable α form at room temperature upon storage or mechanical treatment.[53] Recent studies prove that α form is thermodynamically stable at room temperature.[32][34]

Polytypism

[edit]

Polytypes are a special case of polymorphs, where multiple close-packed crystal structures differ in one dimension only. Polytypes have identical close-packed planes, but differ in the stacking sequence in the third dimension perpendicular to these planes. Silicon carbide (SiC) has more than 170 known polytypes, although most are rare. All the polytypes of SiC have virtually the same density and Gibbs free energy. The most common SiC polytypes are shown in Table 1.

Table 1: Some polytypes of SiC.[54]

Phase Structure Ramsdell notation Stacking sequence Comment
α-SiC hexagonal 2H AB wurtzite form
α-SiC hexagonal 4H ABCB
α-SiC hexagonal 6H ABCACB the most stable and common form
α-SiC rhombohedral 15R ABCACBCABACABCB
β-SiC face-centered cubic 3C ABC sphalerite or zinc blende form

A second group of materials with different polytypes are the transition metal dichalcogenides, layered materials such as molybdenum disulfide (MoS2). For these materials the polytypes have more distinct effects on material properties, e.g. for MoS2, the 1T polytype is metallic in character, while the 2H form is more semiconducting.[55] Another example is tantalum disulfide, where the common 1T as well as 2H polytypes occur, but also more complex 'mixed coordination' types such as 4Hb and 6R, where the trigonal prismatic and the octahedral geometry layers are mixed.[56] Here, the 1T polytype exhibits a charge density wave, with distinct influence on the conductivity as a function of temperature, while the 2H polytype exhibits superconductivity.

ZnS and CdI2 are also polytypical.[57] It has been suggested that this type of polymorphism is due to kinetics where screw dislocations rapidly reproduce partly disordered sequences in a periodic fashion.

Theory

[edit]
Solid phase transitions which transform reversibly without passing through the liquid or gaseous phases are called enantiotropic. In contrast, if the modifications are not convertible under these conditions, the system is monotropic. Experimental data are used to differentiate between enantiotropic and monotropic transitions and energy/temperature semi-quantitative diagrams can be drawn by applying several rules, principally the heat-of-transition rule, the heat-of-fusion rule and the density rule. These rules enable the deduction of the relative positions of the H and Gisobars in the E/T diagram. [1]

In terms of thermodynamics, two types of polymorphic behaviour are recognized. For a monotropic system, plots of the free energies of the various polymorphs against temperature do not cross before all polymorphs melt. As a result, any transition from one polymorph to another below the melting point will be irreversible. For an enantiotropic system, a plot of the free energy against temperature shows a crossing point before the various melting points.[58] It may also be possible to convert interchangeably between the two polymorphs by heating or cooling, or through physical contact with a lower energy polymorph.

A simple model of polymorphism is to model the Gibbs free energy of a ball-shaped crystal as . Here, the first term is the surface energy, and the second term is the volume energy. Both parameters . The function rises to a maximum before dropping, crossing zero at . In order to crystallize, a ball of crystal much overcome the energetic barrier to the part of the energy landscape.[59]

Figure 2

Now, suppose there are two kinds of crystals, with different energies and , and if they have the same shape as in Figure 2, then the two curves intersect at some . Then the system has three phases:

  • . Crystals tend to dissolve. Amorphous phase.
  • . Crystals tend to grow as form 1.
  • . Crystals tend to grow as form 2.

If the crystal is grown slowly, it could be kinetically stuck in form 1.

See also

[edit]

References

[edit]
  1. ^ a b Bernstein, Joel (2002). Polymorphism in Molecular Crystals. New York, USA: Oxford University Press. pp. 1–27. ISBN 0198506058.
  2. ^ a b Brog, Jean-Pierre; Chanez, Claire-Lise; Crochet, Aurelien; Fromm, Katharina M. (2013). "Polymorphism, what it is and how to identify it: a systematic review". RSC Advances. 3 (38): 16905–31. Bibcode:2013RSCAd...316905B. doi:10.1039/c3ra41559g.
  3. ^ Cruz-Cabeza, Aurora J.; Reutzel-Edens, Susan M.; Bernstein, Joel (2015). "Facts and fictions about polymorphism". Chemical Society Reviews. 44 (23): 8619–8635. doi:10.1039/c5cs00227c. PMID 26400501 – via MEDLINE.
  4. ^ Gold, Victor, ed. (2019). "Polymorphic transition". IUPAC Gold Book. doi:10.1351/goldbook. Retrieved January 28, 2024.
  5. ^ a b McCrone, W. C. (1965). "Polymorphism". In Fox, D.; Labes, M.; Weissberger, A. (eds.). Physics and Chemistry of the Organic Solid State. Vol. 2. Wiley-Interscience. pp. 726–767.
  6. ^ Dunitz, Jack D.; Bernstein, Joel (2025-08-06). "Disappearing Polymorphs". Accounts of Chemical Research. 28 (4): 193–200. doi:10.1021/ar00052a005. ISSN 0001-4842.
  7. ^ "Definition of trimorphism - mindat.org glossary". www.mindat.org. Retrieved 2025-08-06.
  8. ^ a b c d Bernstein, Joel (2002). Polymorphism in Molecular Crystals. New York, USA: Oxford University Press. pp. 94–149. ISBN 0198506058.
  9. ^ Cardew, Peter T. (2023). "Ostwald Rule of Stages - Myth or Reality?". Crystal Growth & Design. 23 (6): 3958?3969. Bibcode:2023CrGrD..23.3958C. doi:10.1021/acs.cgd.2c00141.
  10. ^ a b Parrott, Edward P.J.; Zeitler, J. Axel (2015). "Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials". Applied Spectroscopy. 69 (1): 1–25. Bibcode:2015ApSpe..69....1P. doi:10.1366/14-07707. PMID 25506684. S2CID 7699996.
  11. ^ a b c d e Bu?ar, D.-K.; Lancaster, R. W.; Bernstein, J. (2015). "Disappearing Polymorphs Revisited". Angewandte Chemie International Edition. 54 (24): 6972–6993. doi:10.1002/anie.201410356. PMC 4479028. PMID 26031248.
  12. ^ Bowskill, David H.; Sugden, Isaac J.; Konstantinopoulos, Stefanos; Adjiman, Claire S.; Pantelides, Constantinos C. (2021). "Crystal Structure Prediction Methods for Organic Molecules: State of the Art". Annu. Rev. Chem. Biomol. Eng. 12: 593–623. doi:10.1146/annurev-chembioeng-060718-030256. PMID 33770462. S2CID 232377397.
  13. ^ a b Crystal Engineering: The Design and Application of Functional Solids, Volume 539, Kenneth Richard Seddon, Michael Zaworotk 1999
  14. ^ Pharmaceutical Stress Testing: Predicting Drug Degradation, Second Edition Steven W. Baertschi, Karen M. Alsante, Robert A. Reed 2011 CRC Press
  15. ^ W?hler, F.; Liebig, J.; Ann (1832). "Untersuchungen über das Radikal der Benzoes?ure". Annalen der Pharmacie (in German). 3 (3). Wiley: 249–282. doi:10.1002/jlac.18320030302. hdl:2027/hvd.hxdg3f. ISSN 0365-5490.
  16. ^ Thun, Jürgen (2007). "Polymorphism in Benzamide: Solving a 175-Year-Old Riddle". Angewandte Chemie International Edition. 46 (35): 6729–6731. doi:10.1002/anie.200701383. PMID 17665385.
  17. ^ Graeme M. Day; Andrew V. Trask; W. D. Samuel Motherwell; William Jones (2006). "Investigating the Latent Polymorphism of Maleic Acid". Chemical Communications. 1 (1): 54–56. doi:10.1039/b513442k. PMID 16353090.
  18. ^ Thallapally PK, Jetti RK, Katz AK (2004). "Polymorphism of 1,3,5-trinitrobenzene Induced by a Trisindane Additive". Angewandte Chemie International Edition. 43 (9): 1149–1155. doi:10.1002/anie.200352253. PMID 14983460.
  19. ^ Schur, Einat; Bernstein, Joel; Price, Louise S.; Guo, Rui; Price, Sarah L.; Lapidus, Saul H.; Stephens, Peter W. (2019). "The (Current) Acridine Solid Form Landscape: Eight Polymorphs and a Hydrate" (PDF). Crystal Growth & Design. 19 (8): 4884–4893. Bibcode:2019CrGrD..19.4884S. doi:10.1021/acs.cgd.9b00557. S2CID 198349955.
  20. ^ Serezhkin, Viktor N.; Savchenkov, Anton V. (2020). "Application of the Method of Molecular Voronoi–Dirichlet Polyhedra for Analysis of Noncovalent Interactions in Aripiprazole Polymorphs". Crystal Growth & Design. 20 (3): 1997–2003. Bibcode:2020CrGrD..20.1997S. doi:10.1021/acs.cgd.9b01645. S2CID 213824513.
  21. ^ Kr?mer, Katrina (2025-08-06). "Red–orange–yellow reclaims polymorph record with help from molecular cousin". chemistryworld.com. Retrieved 2025-08-06.
  22. ^ Tyler, Andrew R.; Ragbirsingh, Ronnie; McMonagle, Charles J.; Waddell, Paul G.; Heaps, Sarah E.; Steed, Jonathan W.; Thaw, Paul; Hall, Michael J.; Probert, Michael R. (2020). "Encapsulated Nanodroplet Crystallization of Organic-Soluble Small Molecules". Chem. 6 (7): 1755–1765. Bibcode:2020Chem....6.1755T. doi:10.1016/j.chempr.2020.04.009. PMC 7357602. PMID 32685768.
  23. ^ Cruz-Cabeza, Aurora J.; Bernstein, Joel (2014). "Conformational Polymorphism". Chemical Reviews. 114 (4): 2170–2191. doi:10.1021/cr400249d. PMID 24350653.
  24. ^ a b c d Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (Second ed.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  25. ^ "Definition of polymorphism - mindat.org glossary". www.mindat.org. Retrieved 2025-08-06.
  26. ^ "Polymorphism in nanocrystalline binary metal oxides", S. Sood, P.Gouma, Nanomaterials and Energy, 2(NME2), 1-15(2013).
  27. ^ a b c Anatase to Rutile Transformation(ART) summarized in the Journal of Materials Science 2011
  28. ^ Peri?, J.; Vu?ak, M.; Krstulovi?, R.; Bre?evi?, Lj.; Kralj, D. (1996). "Phase Transformation of Calcium Carbonate Polymorphs". Thermochimica Acta. 277 (1 May 1996): 175–86. Bibcode:1996TcAc..277..175P. doi:10.1016/0040-6031(95)02748-3 – via Science Direct.
  29. ^ Newell, Lyman C.; Maxson, R. N.; Filson, M. H. (1939). "Red Mercuric Sulfide". Inorganic Syntheses. Vol. 1. pp. 19–20. doi:10.1002/9780470132326.ch7. ISBN 9780470132326. {{cite book}}: ISBN / Date incompatibility (help)
  30. ^ Drebushchak, V. A.; McGregor, L.; Rychkov, D. A. (February 2017). "Cooling rate "window" in the crystallization of metacetamol form II". Journal of Thermal Analysis and Calorimetry. 127 (2): 1807–1814. doi:10.1007/s10973-016-5954-0. ISSN 1388-6150. S2CID 99391719.
  31. ^ Nyman, Jonas; Day, Graeme M. (2015). "Static and lattice vibrational energy differences between polymorphs". CrystEngComm. 17 (28): 5154–5165. doi:10.1039/C5CE00045A.
  32. ^ a b Dubok, Aleksandr S.; Rychkov, Denis A. (2025-08-06). "Relative Stability of Pyrazinamide Polymorphs Revisited: A Computational Study of Bending and Brittle Forms Phase Transitions in a Broad Temperature Range". Crystals. 13 (4): 617. Bibcode:2023Cryst..13..617D. doi:10.3390/cryst13040617. ISSN 2073-4352.
  33. ^ Borba, Ana; Albrecht, Merwe; Gómez-Zavaglia, Andrea; Suhm, Martin A.; Fausto, Rui (2025-08-06). "Low Temperature Infrared Spectroscopy Study of Pyrazinamide: From the Isolated Monomer to the Stable Low Temperature Crystalline Phase". The Journal of Physical Chemistry A. 114 (1): 151–161. Bibcode:2010JPCA..114..151B. doi:10.1021/jp907466h. hdl:11336/131247. ISSN 1089-5639. PMID 20055514.
  34. ^ a b Hoser, Anna Agnieszka; Rekis, Toms; Madsen, Anders ?stergaard (2025-08-06). "Dynamics and disorder: on the stability of pyrazinamide polymorphs". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 78 (3): 416–424. Bibcode:2022AcCrB..78..416H. doi:10.1107/S2052520622004577. ISSN 2052-5206. PMC 9254588. PMID 35695115.
  35. ^ Smirnova, Valeriya Yu.; Iurchenkova, Anna A.; Rychkov, Denis A. (2025-08-06). "Computational Investigation of the Stability of Di-p-Tolyl Disulfide "Hidden" and "Conventional" Polymorphs at High Pressures". Crystals. 12 (8): 1157. Bibcode:2022Cryst..12.1157S. doi:10.3390/cryst12081157. ISSN 2073-4352.
  36. ^ Rychkov, Denis A.; Stare, Jernej; Boldyreva, Elena V. (2017). "Pressure-driven phase transition mechanisms revealed by quantum chemistry: l -serine polymorphs". Physical Chemistry Chemical Physics. 19 (9): 6671–6676. Bibcode:2017PCCP...19.6671R. doi:10.1039/C6CP07721H. ISSN 1463-9076. PMID 28210731.
  37. ^ Rychkov, Denis A. (2025-08-06). "A Short Review of Current Computational Concepts for High-Pressure Phase Transition Studies in Molecular Crystals". Crystals. 10 (2): 81. Bibcode:2020Cryst..10...81R. doi:10.3390/cryst10020081. ISSN 2073-4352.
  38. ^ Fedorov, A. Yu.; Rychkov, D. A. (September 2020). "Comparison of Different Computational Approaches for Unveiling the High-Pressure Behavior of Organic Crystals at a Molecular Level. Case Study of Tolazamide Polymorphs". Journal of Structural Chemistry. 61 (9): 1356–1366. Bibcode:2020JStCh..61.1356F. doi:10.1134/S0022476620090024. ISSN 0022-4766. S2CID 222299340.
  39. ^ Rychkov, Denis A.; Arkhipov, Sergey G.; Boldyreva, Elena V. (2025-08-06). "Simple and efficient modifications of well known techniques for reliable growth of high-quality crystals of small bioorganic molecules". Journal of Applied Crystallography. 47 (4): 1435–1442. doi:10.1107/S1600576714011273. ISSN 1600-5767.
  40. ^ Buckley, Harold Eugene (1951). Crystal Growth. Wiley.
  41. ^ Surov, Artem O.; Vasilev, Nikita A.; Churakov, Andrei V.; Stroh, Julia; Emmerling, Franziska; Perlovich, German L. (2019). "Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways and Thermodynamic Stability". Crystal Growth & Design. 19 (5): 2979–2990. Bibcode:2019CrGrD..19.2979S. doi:10.1021/acs.cgd.9b00185. S2CID 132854494.
  42. ^ Shamshina, Julia L.; Rogers, Robin D. (2023). "Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties". Chemical Reviews. 123 (20): 11894–11953. doi:10.1021/acs.chemrev.3c00384. PMID 37797342.
  43. ^ "Accredited Degree Programmes" (PDF).
  44. ^ Bhardwaj, Rajni M. (2016), "Exploring the Physical Form Landscape of Clozapine, Amoxapine and Loxapine", Control and Prediction of Solid-State of Pharmaceuticals, Springer Theses, Cham: Springer International Publishing, pp. 153–193, doi:10.1007/978-3-319-27555-0_7, ISBN 978-3-319-27554-3, retrieved 2025-08-06
  45. ^ McQuiston, Dylan K.; Mucalo, Michael R.; Saunders, Graham C. (2025-08-06). "The structure of posaconazole and its solvates with methanol, and dioxane and water: Difluorophenyl as a hydrogen bond donor". Journal of Molecular Structure. 1179: 477–486. Bibcode:2019JMoSt1179..477M. doi:10.1016/j.molstruc.2018.11.031. ISSN 0022-2860. S2CID 105578644.
  46. ^ Bauer J, et al. (2004). "Ritonavir: An Extraordinary Example of Conformational Polymorphism". Pharmaceutical Research. 18 (6): 859–866. doi:10.1023/A:1011052932607. PMID 11474792. S2CID 20923508.
  47. ^ Peddy Vishweshwar; Jennifer A. McMahon; Mark Oliveira; Matthew L. Peterson & Michael J. Zaworotko (2005). "The Predictably Elusive Form II of Aspirin". J. Am. Chem. Soc. 127 (48): 16802–16803. Bibcode:2005JAChS.12716802V. doi:10.1021/ja056455b. PMID 16316223.
  48. ^ Andrew D. Bond; Roland Boese; Gautam R. Desiraju (2007). "On the Polymorphism of Aspirin: Crystalline Aspirin as Intergrowths of Two "Polymorphic" Domains". Angewandte Chemie International Edition. 46 (4): 618–622. doi:10.1002/anie.200603373. PMID 17139692.
  49. ^ "Polytypism - Online Dictionary of Crystallography". reference.iucr.org.
  50. ^ Wang, In-Chun; Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Choi, Yongsun; Kim, Woo-Sik; Kim, Chang-Sam; Jeong, Myung-Yung; Choi, Guang Jin (14 June 2011). "Polymorph Transformation in Paracetamol Monitored by In-line NIR Spectroscopy During a Cooling Crystallization Process". AAPS PharmSciTech. 12 (2): 764–770. doi:10.1208/s12249-011-9642-x. PMC 3134639. PMID 21671200.
  51. ^ "Disappearing Polymorphs and Gastrointestinal Infringement". blakes.com. 20 July 2012. Archived from the original on 20 July 2012.
  52. ^ Castro, Ricardo A. E.; Maria, Teresa M. R.; évora, António O. L.; Feiteira, Joana C.; Silva, M. Ramos; Beja, A. Matos; Canotilho, Jo?o; Eusébio, M. Ermelinda S. (2025-08-06). "A New Insight into Pyrazinamide Polymorphic Forms and their Thermodynamic Relationships". Crystal Growth & Design. 10 (1): 274–282. Bibcode:2010CrGrD..10..274C. doi:10.1021/cg900890n. ISSN 1528-7483.
  53. ^ Cherukuvada, Suryanarayan; Thakuria, Ranjit; Nangia, Ashwini (2025-08-06). "Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy". Crystal Growth & Design. 10 (9): 3931–3941. Bibcode:2010CrGrD..10.3931C. doi:10.1021/cg1004424. ISSN 1528-7483.
  54. ^ "The basics of crystallography and diffraction", Christopher Hammond, Second edition, Oxford science publishers, IUCr, page 28 ISBN 0 19 8505531.
  55. ^ Li, Xiao; Zhu, Hongwei (2025-08-06). "Two-dimensional MoS2: Properties, preparation, and applications". Journal of Materiomics. 1 (1): 33–44. doi:10.1016/j.jmat.2015.03.003.
  56. ^ Wilson, J.A.; Di Salvo, F. J.; Mahajan, S. (October 1974). "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides". Advances in Physics. 50 (8): 1171–1248. doi:10.1080/00018730110102718. S2CID 218647397.
  57. ^ C.E. Ryan, R.C. Marshall, J.J. Hawley, I. Berman & D.P. Considine, "The Conversion of Cubic to Hexagonal Silicon Carbide as a Function of Temperature and Pressure," U.S. Air Force, Physical Sciences Research Papers, #336, Aug 1967, p 1-26.
  58. ^ Carletta, Andrea (2015). "Solid-State Investigation of Polymorphism and Tautomerism of Phenylthiazole-thione: A Combined Crystallographic, Calorimetric, and Theoretical Survey". Crystal Growth & Design. 15 (5): 2461–2473. Bibcode:2015CrGrD..15.2461C. doi:10.1021/acs.cgd.5b00237.
  59. ^ Ward, Michael D. (February 2017). "Perils of Polymorphism: Size Matters". Israel Journal of Chemistry. 57 (1–2): 82–92. doi:10.1002/ijch.201600071. ISSN 0021-2148.
[edit]
脚气脱皮用什么药最好 河南专升本考什么 什么水解酒 left什么意思 王维有什么之称
拔罐拔出水是什么原因 公鸡为什么会啄人 钙化是什么意思啊 刚开始怀孕会有什么症状 什么各异
知足是什么意思 洋辣子蛰了用什么药 血小板分布宽度偏高是什么意思 韩愈字什么 支原体吃什么药最有效
腹胀挂什么科 出差什么意思 高血压的人不能吃什么 排便困难拉不出来是什么原因 舌头裂纹是什么病
头痛是什么原因造成的hcv8jop0ns4r.cn 保险凭证号是什么hcv8jop1ns4r.cn 你的脚步流浪在天涯是什么歌曲hcv7jop5ns1r.cn 上户口需要什么资料hcv8jop1ns6r.cn 西洋参有什么作用和功效beikeqingting.com
玛尼是什么意思hcv8jop7ns3r.cn 耳朵不舒服是什么原因hcv8jop1ns2r.cn 沉默不是代表我的错是什么歌hcv8jop1ns9r.cn 什么危不什么wuhaiwuya.com 野生黄芪长什么样子的图片wuhaiwuya.com
高血糖吃什么比较好hcv8jop1ns5r.cn 县人民医院是什么级别clwhiglsz.com 诏安是什么意思hcv8jop2ns5r.cn 血虚吃什么中成药最好hcv8jop0ns5r.cn 口臭胃火大吃什么药好jingluanji.com
233是什么意思啊xjhesheng.com 身上长扁平疣是什么原因造成的hcv9jop4ns2r.cn 根茎叶属于什么器官hcv9jop1ns7r.cn 摩丝是什么hcv9jop5ns9r.cn 西米是用什么做的hcv9jop5ns7r.cn
百度