男人左眼跳是什么预兆| 什么展翅| 妊娠纹什么时候开始长| 头晕吃什么药| 打蛋白针有什么作用| 宜宾燃面为什么叫燃面| 12306什么时候放票| 早上喝一杯温开水有什么好处| 脚趾头麻木是什么原因引起的| 苯三酚注射有什么用| 水险痣是什么意思| 鳕鱼不能和什么一起吃| 孕妇什么时候做nt| agc什么意思| 脑电图是检查什么的| 九分裤配什么鞋| 什么是八爪鱼| 七月一号是什么节| 新生儿超敏c反应蛋白高说明什么| 烊化兑服是什么意思| 元旦北京有什么好玩的| 肌苷是什么| 爵迹小说为什么不写了| 胃泌素高是什么原因| 肝右叶钙化灶什么意思| 血糖高对身体有什么危害| 痛风可以吃什么肉类和蔬菜| 机器学习是什么| 水豚吃什么| 什么是婚姻| 做梦和别人吵架意味着什么| 完璧归赵发生在什么时期| 疝气是什么病怎样治疗| 什么的雷锋| 什么是红斑狼疮病| 一串什么| 天真是什么意思| 角瓜是什么瓜| 各什么己| 腺样体肥大挂什么科| 心安是什么意思| 经期有血块是什么原因| 三级医院什么意思| RH是什么| 什么的被子| elle中文叫什么| 右肋下疼痛是什么原因| 老人怕冷是什么原因| 抗心磷脂抗体阳性是什么意思| 一暴十寒什么意思| 梦到洗衣服是什么意思| 梦见楼塌了是什么意思| 骨皮质是什么| 白带带血丝是什么原因| 为什么不能空腹吃香蕉| 狗狗为什么喜欢舔人| 静脉炎的症状是什么| 月忌日是什么意思| 什么药退烧快| surprise是什么意思| 鹦鹉吃什么食物| 谷氨酸是什么| 梦到别人怀孕是什么意思| 宫颈多发纳囊是什么病| 经常头晕头疼是什么原因| 璎珞是什么意思| 大量出汗是什么原因引起的| 青枝骨折属于什么骨折| 须眉什么意思| 急性咽喉炎吃什么药好得快| 二月二十一是什么星座| 人工授精是什么意思| 法令纹是什么| 阴道口痒用什么药| 大腿为什么会长妊娠纹| 美丽的邂逅是什么意思| 肺实性结节是什么意思| 斜视手术有什么后遗症和风险| 白癜风什么症状| 除牛反绒是什么意思| 月经期间可以喝什么汤比较好| 世界上最多的动物是什么| BS是什么意思啊| 儒字五行属什么| 妇科清洁度3度用什么药治疗| 投诉与举报有什么区别| 小别胜新婚是什么意思| 胃酸是什么颜色的| 梦到老房子是什么意思| 健脾吃什么食物| 肝火旺盛吃什么中成药| 吃什么升血压| 桂花像什么| db是什么单位| c14呼气试验是检查什么的| 狗有眼屎是什么原因| 马刺是什么意思| 玄色是什么颜色| 什么鸟好养又与人亲近| 为什么吃火龙果会拉肚子| 当演员需要什么条件| 白菜属于什么科| opt是什么意思| 胰子是什么意思| 不加一笔是什么字| 尿微量白蛋白高是什么原因| 1998年五行属什么| 子宫形态不规则是什么意思| 阴部痒痒的是什么原因| 械字号产品是什么意思| 女人吃善存有什么好处| 头发软是什么原因| 特需门诊和专家门诊有什么区别| 尿频尿急是什么原因| 百雀羚适合什么年龄段| he是什么气体| 蜂蜜的主要成分是什么| 小便尿道刺痛吃什么药| 媛是什么意思| 金疮是什么病| 午餐肉炒什么菜好吃| 合羽念什么| 2月18号是什么星座| 吃什么水果对肠胃好| 消炎药是什么药| 戾气太重是什么意思| 锁骨上有痣代表什么| ml代表什么单位| 乳腺增生应该注意些什么| 什么的荷花| 劲仔小鱼是什么鱼做的| human什么意思| 布施蚂蚁什么食物最好| 谪仙是什么意思| 空调滤芯什么牌子好| 什么样的阳光填形容词| 吃饭时头晕是什么原因| 姑息治疗是什么意思| 肝炎吃什么药| 活学活用是什么意思| 没学历可以学什么技术| 皮肤黑穿什么颜色| pcl是什么材料| 为什么腋下有异味| poppy是什么意思| 6月26日什么星座| 锋芒是什么意思| 白细胞和血小板高是什么原因| 黄瓜吃了有什么好处| 身体发冷是什么原因| 清热解毒是什么意思| 团县委是什么单位| 生姜能治什么病| 一什么不什么| 复方木尼孜其颗粒治什么病| 男性做彩超要检查什么| 治疗狐臭最好的方法是什么| 麻醉剂是什么| 赏脸是什么意思| 精满自溢是什么意思| 三拜九叩是什么意思| 宫腔内钙化灶是什么意思| 嗯哼是什么意思| 紫苏是什么植物| 打完狂犬疫苗不能吃什么| 阿尔茨海默症吃什么药| 维他命是什么| 辅酶q10是什么东西| 为什么小孩子经常流鼻血| 牛蹄筋炖什么好吃| 五光十色是什么生肖| 皮肤上出现小红点是什么原因| 地痞是什么意思| 怀孕两个月出血是什么原因| 认真地什么| 口苦口干吃什么药最好| 肝内低回声区是什么意思| 95年的猪是什么命| 火牙是什么原因引起的| 一什么清香| 戒色是什么意思| 为什么床上有蚂蚁| 卧榻是什么意思| 头疼去医院挂什么科| 脚突然肿了是什么原因| 什么叫囊肿| 吃什么排宿便清肠彻底| 风是什么| od什么意思| 避孕套有什么牌子| 虚岁29岁属什么生肖| 午字五行属什么| 三个小是什么字| 被螨虫咬了非常痒用什么药膏好| 平诊是什么意思| 梦到捡菌子是什么意思| 吃什么不会长胖| 心脏ct能检查出什么| 海菜是什么| copd什么意思| 空调数显是什么意思| 女生过生日送什么礼物好| 艾迪生病是什么病| cba什么时候开始比赛| 子宫肌腺症是什么病| 红蓝是什么意思| 发烧挂什么科| 七五年属什么生肖| 有鸟飞进屋是什么预兆| 梭形是什么形状| proof是什么意思| 16周检查什么项目| 临官是什么意思| 天天打喷嚏是什么原因| 单身领养孩子需要什么条件| 美女如云什么意思| 为什么会肾结石| 毛巾发黄是什么原因| 古代男宠叫什么| 认知是什么意思| 甲亢看什么科| 衬衫搭配什么裤子好看| 女的什么时候退休| 什么样的防晒霜比较好| 扁桃体发炎有什么症状| 到此为止是什么意思| 鹅蛋炒香菜治什么病| 什么的狼| 成都有什么| 水痘不能吃什么食物| 鸡蛋和什么不能一起吃吗| 室缺是什么意思| 喝什么茶最养胃| 86年属什么| 为什么肾阳虚很难恢复| 小麦什么时候播种| 为什么微信运动总是显示步数为0| 10月生日是什么星座| 结核杆菌dna检测是检查什么| 为什么发动文化大革命| 荞麦是什么| 脾虚湿重吃什么中成药| 惹上官司是犯了什么煞| 地球上什么东西每天要走的距离最远| 股票融是什么意思| 护理学是什么| 五行缺土戴什么| 为什么会勃起| 众望所归是什么意思| 吴亦凡帅到什么程度| 不负卿是什么意思| 头晕应该挂什么科| 塑料是用什么做的| 滑膜炎吃什么药| 心脏支架是什么病| canon什么牌子| 什么时候拔罐最好| 心肌缺血吃什么药管用| 二十年婚姻是什么婚| 月经周期短是什么原因| 男人沉默了说明什么| 人流后吃什么水果好| 叶公好龙告诉我们什么道理| 梦见下大雪是什么预兆| 百度Jump to content

安徽:淮南市“扫黄打非”文化执法新闻图片入选全...

From Wikipedia, the free encyclopedia
百度 雷电:盛夏,受强对流天气影响,全省有2起雷电灾害发生。

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R,[1] or a module of finite type.

Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.

A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group.

Definition

[edit]

The left R-module M is finitely generated if there exist a1, a2, ..., an in M such that for any x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan.

The set {a1, a2, ..., an} is referred to as a generating set of M in this case. A finite generating set need not be a basis, since it need not be linearly independent over R. What is true is: M is finitely generated if and only if there is a surjective R-linear map:

for some n; in other words, M is a quotient of a free module of finite rank.

If a set S generates a module that is finitely generated, then there is a finite generating set that is included in S, since only finitely many elements in S are needed to express the generators in any finite generating set, and these finitely many elements form a generating set. However, it may occur that S does not contain any finite generating set of minimal cardinality. For example the set of the prime numbers is a generating set of viewed as -module, and a generating set formed from prime numbers has at least two elements, while the singleton{1} is also a generating set.

In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).

Any module is the union of the directed set of its finitely generated submodules.

A module M is finitely generated if and only if any increasing chain Mi of submodules with union M stabilizes: i.e., there is some i such that Mi = M. This fact with Zorn's lemma implies that every nonzero finitely generated module admits maximal submodules. If any increasing chain of submodules stabilizes (i.e., any submodule is finitely generated), then the module M is called a Noetherian module.

Examples

[edit]
  • If a module is generated by one element, it is called a cyclic module.
  • Let R be an integral domain with K its field of fractions. Then every finitely generated R-submodule I of K is a fractional ideal: that is, there is some nonzero r in R such that rI is contained in R. Indeed, one can take r to be the product of the denominators of the generators of I. If R is Noetherian, then every fractional ideal arises in this way.
  • Finitely generated modules over the ring of integers Z coincide with the finitely generated abelian groups. These are completely classified by the structure theorem, taking Z as the principal ideal domain.
  • Finitely generated (say left) modules over a division ring are precisely finite dimensional vector spaces (over the division ring).

Some facts

[edit]

Every homomorphic image of a finitely generated module is finitely generated. In general, submodules of finitely generated modules need not be finitely generated. As an example, consider the ring R = Z[X1, X2, ...] of all polynomials in countably many variables. R itself is a finitely generated R-module (with {1} as generating set). Consider the submodule K consisting of all those polynomials with zero constant term. Since every polynomial contains only finitely many terms whose coefficients are non-zero, the R-module K is not finitely generated.

In general, a module is said to be Noetherian if every submodule is finitely generated. A finitely generated module over a Noetherian ring is a Noetherian module (and indeed this property characterizes Noetherian rings): A module over a Noetherian ring is finitely generated if and only if it is a Noetherian module. This resembles, but is not exactly Hilbert's basis theorem, which states that the polynomial ring R[X] over a Noetherian ring R is Noetherian. Both facts imply that a finitely generated commutative algebra over a Noetherian ring is again a Noetherian ring.

More generally, an algebra (e.g., ring) that is a finitely generated module is a finitely generated algebra. Conversely, if a finitely generated algebra is integral (over the coefficient ring), then it is finitely generated module. (See integral element for more.)

Let 0 → M′ → MM′′ → 0 be an exact sequence of modules. Then M is finitely generated if M′, M′′ are finitely generated. There are some partial converses to this. If M is finitely generated and M′′ is finitely presented (which is stronger than finitely generated; see below), then M′ is finitely generated. Also, M is Noetherian (resp. Artinian) if and only if M′, M′′ are Noetherian (resp. Artinian).

Let B be a ring and A its subring such that B is a faithfully flat right A-module. Then a left A-module F is finitely generated (resp. finitely presented) if and only if the B-module B ?A F is finitely generated (resp. finitely presented).[2]

Finitely generated modules over a commutative ring

[edit]

For finitely generated modules over a commutative ring R, Nakayama's lemma is fundamental. Sometimes, the lemma allows one to prove finite dimensional vector spaces phenomena for finitely generated modules. For example, if f : MM is a surjective R-endomorphism of a finitely generated module M, then f is also injective, and hence is an automorphism of M.[3] This says simply that M is a Hopfian module. Similarly, an Artinian module M is coHopfian: any injective endomorphism f is also a surjective endomorphism.[4] The Forster–Swan theorem gives an upper bound for the minimal number of generators of a finitely generated module M over a commutative Noetherian ring.

Any R-module is an inductive limit of finitely generated R-submodules. This is useful for weakening an assumption to the finite case (e.g., the characterization of flatness with the Tor functor).

An example of a link between finite generation and integral elements can be found in commutative algebras. To say that a commutative algebra A is a finitely generated ring over R means that there exists a set of elements G = {x1, ..., xn} of A such that the smallest subring of A containing G and R is A itself. Because the ring product may be used to combine elements, more than just R-linear combinations of elements of G are generated. For example, a polynomial ring R[x] is finitely generated by {1, x} as a ring, but not as a module. If A is a commutative algebra (with unity) over R, then the following two statements are equivalent:[5]

  • A is a finitely generated R module.
  • A is both a finitely generated ring over R and an integral extension of R.

Generic rank

[edit]

Let M be a finitely generated module over an integral domain A with the field of fractions K. Then the dimension is called the generic rank of M over A. This number is the same as the number of maximal A-linearly independent vectors in M or equivalently the rank of a maximal free submodule of M (cf. Rank of an abelian group). Since , is a torsion module. When A is Noetherian, by generic freeness, there is an element f (depending on M) such that is a free -module. Then the rank of this free module is the generic rank of M.

Now suppose the integral domain A is an -graded algebra over a field k generated by finitely many homogeneous elements of degrees . Suppose M is graded as well and let be the Poincaré series of M. By the Hilbert–Serre theorem, there is a polynomial F such that . Then is the generic rank of M.[6]

A finitely generated module over a principal ideal domain is torsion-free if and only if it is free. This is a consequence of the structure theorem for finitely generated modules over a principal ideal domain, the basic form of which says a finitely generated module over a PID is a direct sum of a torsion module and a free module. But it can also be shown directly as follows: let M be a torsion-free finitely generated module over a PID A and F a maximal free submodule. Let f be in A such that . Then is free since it is a submodule of a free module and A is a PID. But now is an isomorphism since M is torsion-free.

By the same argument as above, a finitely generated module over a Dedekind domain A (or more generally a semi-hereditary ring) is torsion-free if and only if it is projective; consequently, a finitely generated module over A is a direct sum of a torsion module and a projective module. A finitely generated projective module over a Noetherian integral domain has constant rank and so the generic rank of a finitely generated module over A is the rank of its projective part.

Equivalent definitions and finitely cogenerated modules

[edit]

The following conditions are equivalent to M being finitely generated (f.g.):

  • For any family of submodules {Ni | iI} in M, if , then for some finite subset F of I.
  • For any chain of submodules {Ni | iI} in M, if , then Ni = M for some i in I.
  • If is an epimorphism, then the restriction is an epimorphism for some finite subset F of I.

From these conditions it is easy to see that being finitely generated is a property preserved by Morita equivalence. The conditions are also convenient to define a dual notion of a finitely cogenerated module M. The following conditions are equivalent to a module being finitely cogenerated (f.cog.):

  • For any family of submodules {Ni | iI} in M, if , then for some finite subset F of I.
  • For any chain of submodules {Ni | iI} in M, if , then Ni = {0} for some i in I.
  • If is a monomorphism, where each is an R module, then is a monomorphism for some finite subset F of I.

Both f.g. modules and f.cog. modules have interesting relationships to Noetherian and Artinian modules, and the Jacobson radical J(M) and socle soc(M) of a module. The following facts illustrate the duality between the two conditions. For a module M:

  • M is Noetherian if and only if every submodule N of M is f.g.
  • M is Artinian if and only if every quotient module M/N is f.cog.
  • M is f.g. if and only if J(M) is a superfluous submodule of M, and M/J(M) is f.g.
  • M is f.cog. if and only if soc(M) is an essential submodule of M, and soc(M) is f.g.
  • If M is a semisimple module (such as soc(N) for any module N), it is f.g. if and only if f.cog.
  • If M is f.g. and nonzero, then M has a maximal submodule and any quotient module M/N is f.g.
  • If M is f.cog. and nonzero, then M has a minimal submodule, and any submodule N of M is f.cog.
  • If N and M/N are f.g. then so is M. The same is true if "f.g." is replaced with "f.cog."

Finitely cogenerated modules must have finite uniform dimension. This is easily seen by applying the characterization using the finitely generated essential socle. Somewhat asymmetrically, finitely generated modules do not necessarily have finite uniform dimension. For example, an infinite direct product of nonzero rings is a finitely generated (cyclic!) module over itself, however it clearly contains an infinite direct sum of nonzero submodules. Finitely generated modules do not necessarily have finite co-uniform dimension either: any ring R with unity such that R/J(R) is not a semisimple ring is a counterexample.

Finitely presented, finitely related, and coherent modules

[edit]

Another formulation is this: a finitely generated module M is one for which there is an epimorphism mapping Rk onto M :

f : RkM.

Suppose now there is an epimorphism,

φ : FM.

for a module M and free module F.

  • If the kernel of φ is finitely generated, then M is called a finitely related module. Since M is isomorphic to F/ker(φ), this basically expresses that M is obtained by taking a free module and introducing finitely many relations within F (the generators of ker(φ)).
  • If the kernel of φ is finitely generated and F has finite rank (i.e. F = Rk), then M is said to be a finitely presented module. Here, M is specified using finitely many generators (the images of the k generators of F = Rk) and finitely many relations (the generators of ker(φ)). See also: free presentation. Finitely presented modules can be characterized by an abstract property within the category of R-modules: they are precisely the compact objects in this category.
  • A coherent module M is a finitely generated module whose finitely generated submodules are finitely presented.

Over any ring R, coherent modules are finitely presented, and finitely presented modules are both finitely generated and finitely related. For a Noetherian ring R, finitely generated, finitely presented, and coherent are equivalent conditions on a module.

Some crossover occurs for projective or flat modules. A finitely generated projective module is finitely presented, and a finitely related flat module is projective.

It is true also that the following conditions are equivalent for a ring R:

  1. R is a right coherent ring.
  2. The module RR is a coherent module.
  3. Every finitely presented right R module is coherent.

Although coherence seems like a more cumbersome condition than finitely generated or finitely presented, it is nicer than them since the category of coherent modules is an abelian category, while, in general, neither finitely generated nor finitely presented modules form an abelian category.

See also

[edit]

References

[edit]
  1. ^ For example, Matsumura uses this terminology.
  2. ^ Bourbaki 1998, Ch 1, §3, no. 6, Proposition 11.
  3. ^ Matsumura 1989, Theorem 2.4.
  4. ^ Atiyah & Macdonald 1969, Exercise 6.1.
  5. ^ Kaplansky 1970, p. 11, Theorem 17.
  6. ^ Springer 1977, Theorem 2.5.6.

Textbooks

[edit]
  • Atiyah, M. F.; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., pp. ix+128, MR 0242802
  • Bourbaki, Nicolas (1998), Commutative algebra. Chapters 1--7 Translated from the French. Reprint of the 1989 English translation, Elements of Mathematics, Berlin: Springer-Verlag, ISBN 3-540-64239-0
  • Kaplansky, Irving (1970), Commutative rings, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, MR 0254021
  • Lam, T. Y. (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Springer-Verlag, ISBN 978-0-387-98428-5
  • Lang, Serge (1997), Algebra (3rd ed.), Addison-Wesley, ISBN 978-0-201-55540-0
  • Matsumura, Hideyuki (1989), Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Translated from the Japanese by M. Reid (2 ed.), Cambridge: Cambridge University Press, pp. xiv+320, ISBN 0-521-36764-6, MR 1011461
  • Springer, Tonny A. (1977), Invariant theory, Lecture Notes in Mathematics, vol. 585, Springer, doi:10.1007/BFb0095644, ISBN 978-3-540-08242-2.
藏干是什么意思 弱碱性水是什么水 一月六日是什么星座 胃炎吃什么食物好 奇异果和猕猴桃有什么区别
河北有什么特产 支气管炎性改变是什么意思 血压低吃什么药见效快 喝什么茶可以降尿酸 狐媚子是什么意思
羊肉补什么 锥切手术是什么意思 晒单是什么意思 十一月三十是什么星座 国标舞是什么舞
梦见上香是什么意思 trace什么意思 一什么田 放疗为什么死得更快 37是什么意思
眼睛充血是什么原因hcv9jop6ns9r.cn 养字五行属什么hcv8jop0ns8r.cn 叶芽是什么hcv7jop9ns6r.cn 喝酒吃海带有什么危害hanqikai.com 感觉牙齿松动是什么原因hcv8jop6ns6r.cn
什么水果利尿效果最好hcv8jop3ns5r.cn 什么是血液病hcv7jop6ns0r.cn 古天乐属什么生肖hcv9jop2ns6r.cn 哺乳期可以喝什么茶hcv9jop5ns5r.cn 夜间多梦是什么原因hcv7jop6ns7r.cn
恍然大悟是什么意思hcv9jop6ns6r.cn 做什么运动能瘦肚子hcv8jop0ns4r.cn 心衰是什么病hcv9jop4ns4r.cn 氩气是什么气体hcv8jop5ns6r.cn 孕中期宫缩是什么感觉hcv8jop8ns5r.cn
一语惊醒梦中人是什么意思hcv8jop4ns9r.cn 扭转乾坤什么意思hcv9jop5ns3r.cn 铁瓷是什么意思hcv8jop5ns4r.cn 近视眼底改变什么意思clwhiglsz.com 小孩下半夜咳嗽是什么原因hcv8jop0ns6r.cn
百度