novo是什么牌子| 三点水的字大多与什么有关| 12月21是什么星座| 肠胃炎能吃什么食物| 化学专业学什么| 肛门跳动是什么原因| 缺钾吃什么补| 为什么大便是黑色的| 数农是什么| 飞检是什么意思| 肌无力是什么症状| 早上不晨勃是什么原因| 天高云淡是什么季节| 小孩子走神是什么原因| 胸透是查什么的| 尿毒症的尿是什么颜色| 女生为什么会流白带| 经期延长是什么原因引起的| 活动性肺结核是什么意思| 农历2月12日是什么星座| pa是什么意思| 小孩为什么便秘| 尿道感染有什么现象| 泡奶粉用什么水最好| 尿潜血十一是什么意思| 月经血是黑色的是什么原因| 脸上过敏是什么症状| 人为什么做梦| elle是什么档次的牌子| 手控是什么意思| 地豆是什么| 甲胎蛋白什么意思| 任达华属什么生肖| 厅堂是什么意思| 女人什么时候最想男人| 肝功能检查什么| 秦始皇为什么要焚书坑儒| 前列腺炎用什么药| 永垂不朽的垂是什么意思| 入园体检都检查什么| 狗狗呕吐吃什么药| 现在有什么赚钱的路子| 为什么会缺铁| 什么的花蕾| 病人化疗期间吃什么好| 白龙马叫什么| nb是什么意思| 低gi什么意思| 喉咙一直有痰是什么原因| 海胆是什么动物| 鸡婆什么意思| 孕妇现在吃什么水果好| 经期头痛吃什么药| 低压高吃什么中成药| 胃寒吃什么食物好| 吃什么化痰效果最好最快| 黑芝麻不能和什么一起吃| 白果有什么功效与作用| 物色什么意思| 肋骨骨折挂什么科| 悬是什么意思| 胰腺不舒服是什么症状| 知恩图报是什么意思| 阴蒂在什么位置| 白玫瑰花语是什么意思| 黑暗料理是什么意思| 洋地黄中毒首选什么药| 身体缺钾是什么原因造成的| 麻醉剂是什么| 川芎治什么病最好| 肥达氏反应检查什么病| 眼科pd是什么意思| 头痒用什么东西洗头最好| 脑梗前有什么征兆| 眼睛飞蚊症吃什么药| 局部皮肤瘙痒什么原因| 花蛤不能和什么一起吃| 张纯如为什么自杀| 天麻长什么样子图片| 羟基维生素d是什么| 精修照片用什么软件| 2026属什么生肖| 糖尿病2型是什么意思| 二月出生是什么星座| 备孕什么意思| 开荤什么意思| 公务员国考和省考有什么区别| 晚上适合吃什么| 带资进组什么意思| 什么程度下病危通知书| 空集是什么意思| 为什么喜欢秋天| 东吴是现在的什么地方| 四月初五是什么星座| 12345是什么投诉电话| 煊字五行属什么| 耳朵外面痒是什么原因| 绎什么意思| 直接胆红素偏高是什么意思| 粗茶淡饭下一句是什么| 什么是白噪音| uw是什么单位| 特异性生长因子指什么| 铅超标有什么症状| 拍黄瓜是什么意思| blanc什么意思| 肝瘘是什么| 贫血吃什么好| 梦到一个人意味着什么| 女人平胸是什么原因| 心脏扩大吃什么药好| 好运连绵是什么意思| 基酒是什么意思| 筒子骨炖什么好吃| 鲈鱼不能和什么一起吃| 朋友搬家送什么礼物好| dx是什么意思| 盐酸多西环素片治什么病| 什么叫传统文化| 什么事情只能用一只手去做| 悠悠什么意思| 有什么脑筋急转弯| 主加一笔是什么字| 吃什么利尿最快去腹水的| 就不告诉你就不告诉你是什么儿歌| 皮肤一碰就红是什么原因| 血小板计数偏低是什么意思| 人授和试管有什么区别| 人为什么会觉得累| 一直很困想睡觉是什么原因| 紫色适合什么肤色的人| 精斑是什么| 晕车的读音是什么| 胃窦炎是什么原因引起的| 印堂跳动是什么预兆| 2010年是什么生肖| 1983属什么生肖| 发烧有什么症状| 复合面料是什么面料| 痣的位置代表什么| 皮肤有白点是什么原因| 左耳朵发热代表什么预兆| 属羊的和什么属相不合| 什么寒什么冻| 太形象了是什么意思| 紫外线过敏用什么药膏| 免疫球蛋白适合什么人| me too是什么意思| 第一次世界大战是什么时候| 胃肠功能紊乱是什么意思| 全科医学科是什么科| 二级烧伤是什么程度| 肝腹水有什么症状| 拐子是什么鱼| 计算机科学与技术是学什么的| 为什么手会掉皮| 布尔乔亚什么意思| 拔智齿后吃什么恢复快| 丹田是什么器官| 缺锌吃什么| 文雅是什么意思| 野茶属于什么茶| 药物过敏用什么药| 做三明治需要什么材料| 十月初一是什么节| 郑中基为什么娶余思敏| 红红的什么| 田此读什么| 促甲状腺激素偏高有什么症状| 指甲上的月牙代表什么| 肠梗阻是什么意思| 阉割是什么意思| 腰底部疼痛跟什么病有关| 口腔老是出血是什么原因| 弼马温是什么意思| 山不转水转是什么意思| 细胞是由什么构成的| 肝脏挂什么科| 画什么才好看| 1月什么星座| 什么的同学| 吃什么药可以流产不用去医院| 黄瓜又什么又什么| 润喉喝什么| 新陈代谢是指什么| a1代表什么意思| 土是什么颜色| 簋是什么| 了什么意思| 泡面吃多了有什么危害| 不寐病属于什么病症| 喝酒后吃头孢有什么反应| 什么而起| 经常吃莲子有什么好处| 嘴里发酸是什么原因| 不值一提是什么意思| 肌红蛋白高是什么原因| 七杀大运是什么意思| 什么是有机食品和无机食品| ray是什么意思| 为什么尿有点偏红色| 大惊小怪是什么意思| 乳酸杆菌大量是什么意思| 鼻子上长脓包型痘痘是什么原因| 情人节送什么礼物好| 经常中暑是什么原因| 查胆囊挂什么科| 喝红糖水有什么好处和坏处| 长期喝什么水可以美白| 性激素六项什么时候检查| 干姜和生姜有什么区别| 空指什么生肖| 中医把脉能看出什么病| 用维生素e擦脸有什么好处和坏处| 牡丹花什么时候开花| 糖醋里脊是什么肉| 世界上最小的国家是什么| 备孕去医院挂什么科| 齐耳短发适合什么脸型| nlp是什么意思| 胸小是缺少什么营养| 洋参片泡水喝有什么功效| 2017年属鸡火命缺什么| 鸡蛋和什么食物相克| 碧池是什么意思| 护士是什么专业| 坐落是什么意思| 什么是阴虚火旺| 什么算熬夜| 梦见老公怀孕什么预兆| 白细胞酯酶阳性是什么意思| 得了子宫肌瘤注意什么| hg是什么元素| 宝宝发烧是什么原因引起的| 血液凝固快是什么原因| 穿山甲是什么动物| 欲言又止什么意思| 补液盐是什么| 血糖高是什么原因造成的| 干预治疗是什么意思| 开火上下结构念什么| 晗字五行属什么| ph值高是什么原因| 头麻是什么原因| 吃什么养肺| 叫床是什么| 肛门瘙痒是什么原因| 眼皮突然肿了是什么原因| da是什么单位| 夏天能干什么| 1901年是什么年| lm是什么意思| 上天的动物是什么生肖| 洪字五行属什么| 左舌根疼痛是什么情况| 尿分叉吃什么药能治好| 白醋加盐洗脸有什么好处| society是什么意思| 78是什么意思| 肛门里面有个肉疙瘩是什么| 舌尖痛什么原因| 陕西有什么烟| 脚崴了吃什么药| 尿液泡沫多是什么原因| 百度Jump to content

关于开展职业学校学生实习管理联合检查的通知

From Wikipedia, the free encyclopedia
百度 ========================================================商务合作(BD)岗位职责:1、负责APP产品的线上、线下推广工作,完成下载量、安装量等推广目标;2、配合合作渠道进行运营推广及上线发布跟进,负责口碑营销,包括但不限于微信、微博和论坛等推广方式,灵活推广公司的APP产品;3、推广渠道数据监控与反馈跟踪,对推广数据进行分析,有针对性地调整推广策略;4、维护和拓展各大应用市场首发换量等资源;5、管理维护客户关系以及客户间的长期战略合作计划。

Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.

Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible. Clusters are identified via similarity measures. These similarity measures include distance, connectivity, and intensity. Different similarity measures may be chosen based on the data or the application.[1]

Comparison to hard clustering

[edit]

In non-fuzzy clustering (also known as hard clustering), data are divided into distinct clusters, where each data point can only belong to exactly one cluster. In fuzzy clustering, data points can potentially belong to multiple clusters. For example, an apple can be red or green (hard clustering), but an apple can also be red AND green (fuzzy clustering). Here, the apple can be red to a certain degree as well as green to a certain degree. Instead of the apple belonging to green [green = 1] and not red [red = 0], the apple can belong to green [green = 0.5] and red [red = 0.5]. These value are normalized between 0 and 1; however, they do not represent probabilities, so the two values do not need to add up to 1.

Membership

[edit]

Membership grades are assigned to each of the data points (tags). These membership grades indicate the degree to which data points belong to each cluster. Thus, points on the edge of a cluster, with lower membership grades, may be in the cluster to a lesser degree than points in the center of cluster.

Fuzzy C-means clustering

[edit]

One of the most widely used fuzzy clustering algorithms is the Fuzzy C-means clustering (FCM) algorithm.

History

[edit]

Fuzzy c-means (FCM) clustering was developed by J.C. Dunn in 1973,[2] and improved by J.C. Bezdek in 1981.[3]

General description

[edit]

The fuzzy c-means algorithm is very similar to the k-means algorithm:

  • Choose a number of clusters.
  • Assign coefficients randomly to each data point for being in the clusters.
  • Repeat until the algorithm has converged (that is, the coefficients' change between two iterations is no more than , the given sensitivity threshold) :
    • Compute the centroid for each cluster (shown below).
    • For each data point, compute its coefficients of being in the clusters.

Centroid

[edit]

Any point x has a set of coefficients giving the degree of being in the kth cluster wk(x). With fuzzy c-means, the centroid of a cluster is the mean of all points, weighted by their degree of belonging to the cluster, or, mathematically,

where m is the hyper- parameter that controls how fuzzy the cluster will be. The higher it is, the fuzzier the cluster will be in the end.

Algorithm

[edit]

The FCM algorithm attempts to partition a finite collection of elements into a collection of c fuzzy clusters with respect to some given criterion.

Given a finite set of data, the algorithm returns a list of cluster centres and a partition matrix

, where each element, , tells the degree to which element, , belongs to cluster .

The FCM aims to minimize an objective function:

,

where:

.


Comparison to K-means clustering

[edit]

K-means clustering also attempts to minimize the objective function shown above, except that in K-means, the membership values are either zero or one, and cannot take values in between, i.e. . In Fuzzy C-means, the degree of fuzziness is parametrized by , where a larger results in fuzzier clusters. In the limit , the memberships, , converge to 0 or 1, and the Fuzzy C-means objective coincides with that of K-means. In the absence of experimentation or domain knowledge, is commonly set to 2. The algorithm minimizes intra-cluster variance as well, but has the same problems as 'k'-means; the minimum is a local minimum, and the results depend on the initial choice of weights.

Implementation

[edit]

There are several implementations of this algorithm that are publicly available.[4][5]

[edit]

Fuzzy C-means (FCM) with automatically determined for the number of clusters could enhance the detection accuracy.[6] Using a mixture of Gaussians along with the expectation-maximization algorithm is a more statistically formalized method which includes some of these ideas: partial membership in classes.

Example

[edit]

To better understand this principle, a classic example of mono-dimensional data is given below on an x axis.

This data set can be traditionally grouped into two clusters. By selecting a threshold on the x-axis, the data is separated into two clusters. The resulting clusters are labelled 'A' and 'B', as seen in the following image. Each point belonging to the data set would therefore have a membership coefficient of 1 or 0. This membership coefficient of each corresponding data point is represented by the inclusion of the y-axis.

In fuzzy clustering, each data point can have membership to multiple clusters. By relaxing the definition of membership coefficients from strictly 1 or 0, these values can range from any value from 1 to 0. The following image shows the data set from the previous clustering, but now fuzzy c-means clustering is applied. First, a new threshold value defining two clusters may be generated. Next, new membership coefficients for each data point are generated based on clusters centroids, as well as distance from each cluster centroid.

As one can see, the middle data point belongs to cluster A and cluster B. the value of 0.3 is this data point's membership coefficient for cluster A .[7]

Applications

[edit]

Clustering problems have applications in surface science, biology, medicine, psychology, economics, and many other disciplines.[8]

Bioinformatics

[edit]

In the field of bioinformatics, clustering is used for a number of applications. One use is as a pattern recognition technique to analyze gene expression data from RNA-sequencing data or other technologies.[9] In this case, genes with similar expression patterns are grouped into the same cluster, and different clusters display distinct, well-separated patterns of expression. Use of clustering can provide insight into gene function and regulation.[8] Because fuzzy clustering allows genes to belong to more than one cluster, it allows for the identification of genes that are conditionally co-regulated or co-expressed.[10] For example, one gene may be acted on by more than one transcription factor, and one gene may encode a protein that has more than one function. Thus, fuzzy clustering is more appropriate than hard clustering.

Image analysis

[edit]

Fuzzy c-means has been a very important tool for image processing in clustering objects in an image. In the 1970s, mathematicians introduced the spatial term into the FCM algorithm to improve the accuracy of clustering under noise.[11] Furthermore, FCM algorithms have been used to distinguish between different activities using image-based features such as the Hu and the Zernike Moments.[12] Alternatively, A fuzzy logic model can be described on fuzzy sets that are defined on three components of the HSL color space HSL and HSV; The membership functions aim to describe colors follow the human intuition of color identification.[13]

Marketing

[edit]

In marketing, customers can be grouped into fuzzy clusters based on their needs, brand choices, psycho-graphic profiles, or other marketing related partitions.[citation needed]

Image processing example

[edit]
Image segmented by fuzzy clustering, with the original (top left), clustered (top right), and membership map (bottom)

Image segmentation using k-means clustering algorithms has long been used for pattern recognition, object detection, and medical imaging. However, due to real world limitations such as noise, shadowing, and variations in cameras, traditional hard clustering is often unable to reliably perform image processing tasks as stated above.[citation needed] Fuzzy clustering has been proposed as a more applicable algorithm in the performance to these tasks. Given is gray scale image that has undergone fuzzy clustering in Matlab.[14] The original image is seen next to a clustered image. Colors are used to give a visual representation of the three distinct clusters used to identify the membership of each pixel. Below, a chart is given that defines the fuzzy membership coefficients of their corresponding intensity values.

Depending on the application for which the fuzzy clustering coefficients are to be used, different pre-processing techniques can be applied to RGB images. RGB to HCL conversion is common practice.[15]

See also

[edit]

References

[edit]
  1. ^ "Fuzzy Clustering". reference.wolfram.com. Retrieved 2025-08-04.
  2. ^ Dunn, J. C. (2025-08-04). "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters". Journal of Cybernetics. 3 (3): 32–57. doi:10.1080/01969727308546046. ISSN 0022-0280.
  3. ^ Bezdek, James C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. ISBN 0-306-40671-3.
  4. ^ Alobaid, Ahmad, fuzzycmeans: Fuzzy c-means according to the research paper by James C. Bezdek et. al, retrieved 2025-08-04
  5. ^ Dias, Madson, fuzzy-c-means: A simple python implementation of Fuzzy C-means algorithm., retrieved 2025-08-04
  6. ^ El-Khamy, Said E.; Sadek, Rowayda A.; El-Khoreby, Mohamed A. (2015). "An efficient brain mass detection with adaptive clustered based fuzzy C-mean and thresholding". 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). pp. 429–433. doi:10.1109/ICSIPA.2015.7412229. ISBN 978-1-4799-8996-6.
  7. ^ "Clustering - Fuzzy C-means". home.deib.polimi.it. Retrieved 2025-08-04.
  8. ^ a b Ben-Dor, Amir; Shamir, Ron; Yakhini, Zohar (2025-08-04). "Clustering Gene Expression Patterns". Journal of Computational Biology. 6 (3–4): 281–297. CiteSeerX 10.1.1.34.5341. doi:10.1089/106652799318274. ISSN 1066-5277. PMID 10582567.
  9. ^ Valafar, Faramarz (2025-08-04). "Pattern Recognition Techniques in Microarray Data Analysis". Annals of the New York Academy of Sciences. 980 (1): 41–64. Bibcode:2002NYASA.980...41V. CiteSeerX 10.1.1.199.6445. doi:10.1111/j.1749-6632.2002.tb04888.x. ISSN 1749-6632. PMID 12594081. S2CID 343093.
  10. ^ Valafar F. Pattern recognition techniques in microarray data analysis. Annals of the New York Academy of Sciences. 2002 Dec 1;980(1):41-64.
  11. ^ Ahmed, Mohamed N.; Yamany, Sameh M.; Mohamed, Nevin; Farag, Aly A.; Moriarty, Thomas (2002). "A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data" (PDF). IEEE Transactions on Medical Imaging. 21 (3): 193–199. Bibcode:2002ITMI...21..193A. CiteSeerX 10.1.1.331.9742. doi:10.1109/42.996338. PMID 11989844. S2CID 8480349. Archived from the original (PDF) on 2025-08-04. Retrieved 2025-08-04..
  12. ^ Banerjee, Tanvi (2014). "Day or Night Activity Recognition From Video Using Fuzzy Clustering Techniques". IEEE Transactions on Fuzzy Systems. 22 (3): 483–493. Bibcode:2014ITFS...22..483B. CiteSeerX 10.1.1.652.2819. doi:10.1109/TFUZZ.2013.2260756. S2CID 11606344.
  13. ^ Alireza, Kashani; Kashani, Amir; Milani, Nargess; Akhlaghi, Peyman; Khezri, Kaveh (2008). "Robust Color Classification Using Fuzzy Reasoning and Genetic Algorithms in RoboCup Soccer Leagues". RoboCup 2007: Robot Soccer World Cup XI. Lecture Notes in Computer Science. Vol. 5001. pp. 548–555. doi:10.1007/978-3-540-68847-1_59. ISBN 978-3-540-68846-4.
  14. ^ "Fuzzy Clustering - MATLAB & Simulink". www.mathworks.com. Retrieved 2025-08-04.
  15. ^ Lecca, Paola (2011). Systemic Approaches in Bioinformatics and Computational Systems Biology. IGI Global. p. 9. ISBN 9781613504369.
04年属什么生肖 很容易饿是什么原因 好滴是什么意思 为什么会得人乳头瘤病毒 擅长是什么意思
后羿和嫦娥是什么关系 枸杞对女人有什么好处 己未五行属什么 pcm是什么意思 提刑官相当于现在什么官
黄皮肤适合什么颜色的衣服 木加号读什么 2月11日什么星座 肿瘤病人不能吃什么 循序渐进什么意思
炒菜什么时候放盐最合适 颈部淋巴结肿大是什么原因 dtc是什么意思 clara是什么意思 殇什么意思
联袂是什么意思hcv7jop5ns0r.cn 半夜喉咙痒咳嗽是什么原因hcv8jop3ns1r.cn 商朝后面是什么朝代jinxinzhichuang.com 中央办公厅主任什么级别dayuxmw.com 夏吃姜有什么好处hcv7jop6ns6r.cn
晚上睡觉脚抽搐是什么原因hcv8jop7ns4r.cn 嘴巴里苦是什么原因hcv8jop1ns1r.cn 簋是什么hcv8jop1ns9r.cn 皮肤长痘痘是什么原因hcv9jop1ns8r.cn 血儿茶酚胺是查什么的imcecn.com
老年人吃什么营养品好hcv9jop1ns5r.cn 花生什么时候收hcv8jop0ns7r.cn 夜宵吃什么不会胖hanqikai.com 去年属什么生肖hcv7jop5ns1r.cn 骆驼奶有什么功效hcv8jop6ns7r.cn
结婚的礼数都有什么xinmaowt.com 985是什么学校hcv9jop1ns5r.cn 什么水果是凉性的hcv7jop6ns2r.cn 16周检查什么项目96micro.com 发量多的女生适合什么发型hcv8jop4ns1r.cn
百度