绿是什么| 人生于世上有几个知己是什么歌| 下午3点是什么时辰| 什么问题| 慢性气管炎吃什么药最有效| 突然想吃辣是什么原因| 乙肝病毒表面抗体阳性是什么意思| 一个草字头一个见念什么| 气管炎挂什么科| 白酒是什么酿造的| 左眼跳是什么预兆| 内能与什么因素有关| 斯德哥尔摩综合征是什么| 朗朗乾坤下一句是什么| 经常头痛吃什么药效果好| 力什么神什么| 彩色的什么| 胃幽门螺杆菌有什么症状| cdc是什么| 汉卿是什么意思| 菊花有什么颜色| 津是什么意思| 爱思是什么| 什么时候不能喷芸苔素| 龙眼是什么季节的水果| 日值上朔是什么意思| 芒果对身体有什么好处| apm是什么牌子| 血口喷人是什么意思| 相交是什么意思| 被是什么偏旁怎么读| 吃什么药去体内湿气| 日龙包是什么意思| 超生是什么意思| 长期喝茶有什么危害| 心脏属于什么系统| 少校是什么级别| 松弛是什么意思| 好哒是什么意思| 外阴白斑吃什么药| 身高别体重是什么意思| 626是什么日子| 安享晚年是什么意思| 处女是什么象星座| 开飞机是什么意思| 什么的气味| 阴道炎有什么症状| walls是什么意思| 舌苔厚发白是什么原因| 为什么白天能看到月亮| 2月25日是什么星座| 今年什么时候暑伏| adidas是什么品牌| 酒精对皮肤有什么伤害| 为什么总打嗝| 寓言故事有什么特点| 丑时是什么命| 苗子是什么意思| 蜈蚣长什么样子| 安踏属于什么档次| 疙瘩是什么意思| 宫颈那囊什么意思| 兰花代表什么象征意义| 献血后吃什么补血最快| 垫脚石是什么意思| lino是什么面料| 白色的鱼是什么鱼| ck属于什么档次的品牌| gala是什么意思| 白骨精是什么妖怪| 有鸟飞进屋是什么预兆| 女人什么时候最想男人| 什么两难| 109是什么意思| 卯木代表什么| 痒痒粉在药店叫什么| 为什么胃有灼热感| 胃胀气吃什么药好| 白细胞少什么原因| 胃炎不能吃什么| 海鸥手表是什么档次| 梦见棺材是什么意思| 用什么泡脚减肥最快| 玻璃是什么垃圾| 梦见别人受伤流血是什么预兆| 牙疼吃什么食物好得快| 孕妇什么情况下打肝素| 糖类抗原724偏高是什么原因| 沙土地适合种什么农作物| 白炽灯属于什么光源| 2026是什么年| 腿麻是什么原因| 白马王子是什么意思| 生二胎应该注意什么| 白狐寓意着什么| hcy是什么检查项目| 睡不着觉有什么办法| 梦见打老虎是什么预兆| 维生素c什么时候吃最好| 含蓄是什么意思| MC是什么牌子的车| 肌酸激酶高吃什么药| 肠手术后吃什么恢复快| no医学上是什么意思| 梦见生了个儿子是什么意思| 做梦梦到小孩子是什么意思| 长孙是什么意思| 鼠是什么命| 凤是什么意思| 吃什么清肺养肺| 可怜巴巴是什么意思| 女生排卵期是什么意思| pt是什么材质| 宁静什么意思| 韩墨池是什么电视剧| 颞下颌关节挂什么科| 线索细胞阳性什么意思| 3.23是什么星座| 贝母是什么| 月台是什么意思| 宝宝风寒感冒吃什么药最好| 35岁属什么的| 额头老出汗是什么原因| 什么是滑档| 鸡吃什么长得又快又肥| 翠字五行属什么| 樟脑丸是什么| 身体什么| 维生素b12高是什么原因| 相火是什么意思| 硬度不够吃什么药| 老感冒是什么原因| tfboys是什么意思| 8月3号是什么星座| 妤是什么意思| 葡萄什么时候传入中国| 为什么第一次进不去| 缺铁吃什么补得最快| 低密度脂蛋白高吃什么药| 羊配什么生肖最好| 乳房钙化灶是什么意思| 老年人适合喝什么茶| 白肉是指什么肉| lv是什么意思| 葫芦藓是什么植物| 松香对人体有什么危害| 芹菜和什么不能一起吃| 大麻是什么| 胃气上逆吃什么中成药| 什么是绿茶女| 祭是什么意思| 鲁迅是著名的什么家| 夜盲症是什么| 隆字五行属什么| 口腔溃疡是什么| 承德有什么大学| 为什么手上会起小水泡| 大男子主义什么意思| 顺利是什么意思| 节律是什么意思| 九夫痣是什么意思| 鹌鹑蛋不能和什么一起吃| 什么是心理健康| 流产吃什么药可以堕胎| 930是什么意思| 泞字五行属什么| 人参归脾丸适合什么人吃| bmr是什么意思| 脚踝肿是什么病| 孕妇梦见老鼠是什么意思| 胸部有硬块挂什么科| 小孩的指甲脱落是什么原因| 裸婚是什么意思| 儿童腹泻吃什么药| 总胆固醇高吃什么药| 去医院检查怀孕挂什么科| 伤口好转的迹象是什么| 类风湿性关节炎吃什么药| 方阵是什么意思| 迎字五行属什么| 梦见很多苍蝇是什么意思| 孕妇吃鸡蛋对胎儿有什么好处| 什么是预科班| 看灰指甲去医院挂什么科| 属马的女生和什么属相最配| 蜡笔小新的爸爸叫什么| 诸事皆宜是什么意思| apm是什么牌子| 男士去皱纹用什么好| 普洱茶什么牌子好| 血糖可以吃什么水果| 猫的耳朵有什么作用| 气虚吃什么中成药| 调羹是什么意思| 冥寿是什么意思| 牛属相和什么属相配| 大葱喜欢什么肥料| 四面受敌是什么动物| 久卧伤气是什么意思| 高血钾是什么意思| 88属什么生肖| ps医学上是什么意思| 抑郁症挂什么科| 狗狗能看见什么颜色| 灵魂伴侣什么意思| 口语化是什么意思| 什么发什么强| 军衔是什么意思| 彘是什么意思| 自古红颜多薄命是什么意思| 嫩绿的什么| 什么事情只能用一只手去做| 一个口一个塞念什么| cfu是什么单位| 男外科都检查什么| 耳朵疼痛是什么原因| 梦见芹菜是什么意思| 喝茶对人体有什么好处| 什么是干燥综合症| 生酮饮食是什么| 什么原因会导致尿路感染| 流星雨是什么意思| 尿道感染是什么原因| 贫血吃什么补血最快| 全科门诊主要看什么| 3.13是什么星座| pio是什么意思| 小孩为什么会细菌感染| 内热外寒感冒用什么药| 什么胆什么心| 痱子长什么样| 三点水加个有字念什么| 昆仑山在什么地方| 肾不好吃什么药| 惊恐发作是什么病| 寻常疣是什么原因造成的| 丙肝阳性是什么意思呢| 米放什么不生虫子| 哪吒的妈妈叫什么| 玉是什么结构的字| 湿疹用什么药膏好| 飒爽什么意思| 明朝为什么会灭亡| 感冒吃什么食物比较好| 底妆是什么意思| 兰花叶子发黄是什么原因| 梦见棺材是什么征兆| 吃什么东西补充胶原蛋白| 斯德哥尔摩综合征是什么| 宝宝肠胃炎吃什么药| 6.16什么星座| 破釜沉舟是什么意思| 健康证都检查什么项目| 排卵期后面是什么期| 医生说忌生冷是指什么| 藏红花不能和什么一起吃| 老公工作劳累炖什么汤| 慈禧和溥仪是什么关系| 莜面是什么面做的| Continental什么牌子| 小儿流清鼻涕吃什么药效果好| 什么叫义齿| 水牛是什么意思| 日落西山是什么生肖| 百度Jump to content

“伏尔加河之声”开启“一带一路”系列美术展

From Wikipedia, the free encyclopedia
The first two steps of the Gram–Schmidt process
百度 在公共服务方面,可以通过建立在线公共服务平台,让数据多跑路、让群众少跑腿,大幅降低群众获取公共服务的成本,不断提高群众生活便利程度。

In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

By technical definition, it is a method of constructing an orthonormal basis from a set of vectors in an inner product space, most commonly the Euclidean space equipped with the standard inner product. The Gram–Schmidt process takes a finite, linearly independent set of vectors for kn and generates an orthogonal set that spans the same -dimensional subspace of as .

The method is named after J?rgen Pedersen Gram and Erhard Schmidt, but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt.[1] In the theory of Lie group decompositions, it is generalized by the Iwasawa decomposition.

The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix).

The Gram–Schmidt process

[edit]
The modified Gram-Schmidt process being executed on three linearly independent, non-orthogonal vectors of a basis for . Click on image for details. Modification is explained in the Numerical Stability section of this article.

The vector projection of a vector on a nonzero vector is defined as[note 1] where denotes the dot product of the vectors and . This means that is the orthogonal projection of onto the line spanned by . If is the zero vector, then is defined as the zero vector.

Given nonzero linearly-independent vectors the Gram–Schmidt process defines the vectors as follows:

The sequence is the required system of orthogonal vectors, and the normalized vectors form an orthonormal set. The calculation of the sequence is known as Gram–Schmidt orthogonalization, and the calculation of the sequence is known as Gram–Schmidt orthonormalization.

To check that these formulas yield an orthogonal sequence, first compute by substituting the above formula for : we get zero. Then use this to compute again by substituting the formula for : we get zero. For arbitrary the proof is accomplished by mathematical induction.

Geometrically, this method proceeds as follows: to compute , it projects orthogonally onto the subspace generated by , which is the same as the subspace generated by . The vector is then defined to be the difference between and this projection, guaranteed to be orthogonal to all of the vectors in the subspace .

The Gram–Schmidt process also applies to a linearly independent countably infinite sequence {vi}i. The result is an orthogonal (or orthonormal) sequence {ui}i such that for natural number n: the algebraic span of is the same as that of .

If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of . If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs.

A variant of the Gram–Schmidt process using transfinite recursion applied to a (possibly uncountably) infinite sequence of vectors yields a set of orthonormal vectors with such that for any , the completion of the span of is the same as that of . In particular, when applied to a (algebraic) basis of a Hilbert space (or, more generally, a basis of any dense subspace), it yields a (functional-analytic) orthonormal basis. Note that in the general case often the strict inequality holds, even if the starting set was linearly independent, and the span of need not be a subspace of the span of (rather, it's a subspace of its completion).

Example

[edit]

Euclidean space

[edit]

Consider the following set of vectors in (with the conventional inner product)

Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors:

We check that the vectors and are indeed orthogonal: noting that if the dot product of two vectors is 0 then they are orthogonal.

For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above:

Properties

[edit]

Denote by the result of applying the Gram–Schmidt process to a collection of vectors . This yields a map .

It has the following properties:

  • It is continuous
  • It is orientation preserving in the sense that .
  • It commutes with orthogonal maps:

Let be orthogonal (with respect to the given inner product). Then we have

Further, a parametrized version of the Gram–Schmidt process yields a (strong) deformation retraction of the general linear group onto the orthogonal group .

Numerical stability

[edit]

When this process is implemented on a computer, the vectors are often not quite orthogonal, due to rounding errors. For the Gram–Schmidt process as described above (sometimes referred to as "classical Gram–Schmidt") this loss of orthogonality is particularly bad; therefore, it is said that the (classical) Gram–Schmidt process is numerically unstable.

The Gram–Schmidt process can be stabilized by a small modification; this version is sometimes referred to as modified Gram-Schmidt or MGS. This approach gives the same result as the original formula in exact arithmetic and introduces smaller errors in finite-precision arithmetic.

Instead of computing the vector uk as it is computed as

This method is used in the previous animation, when the intermediate vector is used when orthogonalizing the blue vector .

Here is another description of the modified algorithm. Given the vectors , in our first step we produce vectors by removing components along the direction of . In formulas, . After this step we already have two of our desired orthogonal vectors , namely , but we also made already orthogonal to . Next, we orthogonalize those remaining vectors against . This means we compute by subtraction . Now we have stored the vectors where the first three vectors are already and the remaining vectors are already orthogonal to . As should be clear now, the next step orthogonalizes against . Proceeding in this manner we find the full set of orthogonal vectors . If orthonormal vectors are desired, then we normalize as we go, so that the denominators in the subtraction formulas turn into ones.

Algorithm

[edit]

The following MATLAB algorithm implements classical Gram–Schmidt orthonormalization. The vectors v1, ..., vk (columns of matrix V, so that V(:,j) is the th vector) are replaced by orthonormal vectors (columns of U) which span the same subspace.

function U = gramschmidt(V)
    [n, k] = size(V);
    U = zeros(n,k);
    U(:,1) = V(:,1) / norm(V(:,1));
    for i = 2:k
        U(:,i) = V(:,i);
        for j = 1:i-1
            U(:,i) = U(:,i) - (U(:,j)'*U(:,i)) * U(:,j);
        end
        U(:,i) = U(:,i) / norm(U(:,i));
    end
end

The cost of this algorithm is asymptotically O(nk2) floating point operations, where n is the dimensionality of the vectors.[2]

Via Gaussian elimination

[edit]

If the rows {v1, ..., vk} are written as a matrix , then applying Gaussian elimination to the augmented matrix will produce the orthogonalized vectors in place of . However the matrix must be brought to row echelon form, using only the row operation of adding a scalar multiple of one row to another.[3] For example, taking as above, we have

And reducing this to row echelon form produces

The normalized vectors are then as in the example above.

Determinant formula

[edit]

The result of the Gram–Schmidt process may be expressed in a non-recursive formula using determinants.

where and, for , is the Gram determinant

Note that the expression for is a "formal" determinant, i.e. the matrix contains both scalars and vectors; the meaning of this expression is defined to be the result of a cofactor expansion along the row of vectors.

The determinant formula for the Gram-Schmidt is computationally (exponentially) slower than the recursive algorithms described above; it is mainly of theoretical interest.

Expressed using geometric algebra

[edit]

Expressed using notation used in geometric algebra, the unnormalized results of the Gram–Schmidt process can be expressed as which is equivalent to the expression using the operator defined above. The results can equivalently be expressed as[4] which is closely related to the expression using determinants above.

Alternatives

[edit]

Other orthogonalization algorithms use Householder transformations or Givens rotations. The algorithms using Householder transformations are more stable than the stabilized Gram–Schmidt process. On the other hand, the Gram–Schmidt process produces the th orthogonalized vector after the th iteration, while orthogonalization using Householder reflections produces all the vectors only at the end. This makes only the Gram–Schmidt process applicable for iterative methods like the Arnoldi iteration.

Yet another alternative is motivated by the use of Cholesky decomposition for inverting the matrix of the normal equations in linear least squares. Let be a full column rank matrix, whose columns need to be orthogonalized. The matrix is Hermitian and positive definite, so it can be written as using the Cholesky decomposition. The lower triangular matrix with strictly positive diagonal entries is invertible. Then columns of the matrix are orthonormal and span the same subspace as the columns of the original matrix . The explicit use of the product makes the algorithm unstable, especially if the product's condition number is large. Nevertheless, this algorithm is used in practice and implemented in some software packages because of its high efficiency and simplicity.

In quantum mechanics there are several orthogonalization schemes with characteristics better suited for certain applications than original Gram–Schmidt. Nevertheless, it remains a popular and effective algorithm for even the largest electronic structure calculations.[5]

Run-time complexity

[edit]

Gram-Schmidt orthogonalization can be done in strongly-polynomial time. The run-time analysis is similar to that of Gaussian elimination.[6]:?40?

See also

[edit]

References

[edit]
  1. ^ Cheney, Ward; Kincaid, David (2009). Linear Algebra: Theory and Applications. Sudbury, Ma: Jones and Bartlett. pp. 544, 558. ISBN 978-0-7637-5020-6.
  2. ^ Golub & Van Loan 1996, §5.2.8.
  3. ^ Pursell, Lyle; Trimble, S. Y. (1 January 1991). "Gram-Schmidt Orthogonalization by Gauss Elimination". The American Mathematical Monthly. 98 (6): 544–549. doi:10.2307/2324877. JSTOR 2324877.
  4. ^ Doran, Chris; Lasenby, Anthony (2007). Geometric Algebra for Physicists. Cambridge University Press. p. 124. ISBN 978-0-521-71595-9.
  5. ^ Pursell, Yukihiro; et al. (2011). "First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer". Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 1:1–1:11. doi:10.1145/2063384.2063386. ISBN 9781450307710. S2CID 14316074.
  6. ^ Gr?tschel, Martin; Lovász, László; Schrijver, Alexander (1993), Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, doi:10.1007/978-3-642-78240-4, ISBN 978-3-642-78242-8, MR 1261419

Notes

[edit]
  1. ^ In the complex case, this assumes that the inner product is linear in the first argument and conjugate-linear in the second. In physics a more common convention is linearity in the second argument, in which case we define

Sources

[edit]
[edit]
让平是什么意思 防晒霜和隔离霜有什么区别 七月份吃什么水果 女生月经迟迟不来是什么原因 士官是什么级别
梅子色是什么颜色 阴虚火旺有什么症状 imei是什么意思 一日之计在于晨是什么生肖 肌肉酸痛吃什么药
西多士是什么 肆无忌惮的意思是什么 什么是情感障碍 眼睛发炎用什么药效果好 拔鼻毛有什么危害
男人脚肿是什么病的前兆 那敢情好是什么意思 精囊腺囊肿是什么意思 c反应蛋白高是什么意思 脖子肿大是什么病的症状
男人下巴有痣代表什么hcv9jop2ns6r.cn 柠檬泡水喝有什么好处hcv9jop3ns0r.cn 左束支传导阻滞是什么意思hcv8jop0ns7r.cn 尿酸高的人吃什么食物好hcv9jop6ns7r.cn 锰酸钾是什么颜色hcv7jop9ns6r.cn
宫颈病变是什么hcv8jop8ns8r.cn 神经性头疼吃什么药好hcv8jop1ns3r.cn 暹什么意思hcv9jop2ns8r.cn 密云有什么好玩的地方hcv7jop9ns0r.cn 脚趾甲变厚是什么原因hcv8jop2ns7r.cn
吃万艾可有什么副作用hcv7jop7ns4r.cn 跳蚤长什么样hcv7jop7ns3r.cn 被隐翅虫咬了涂什么药hcv9jop4ns8r.cn 独占鳌头是什么意思jinxinzhichuang.com 为什么会有口腔溃疡hcv8jop8ns9r.cn
腹泻吃什么药dayuxmw.com 钧五行属什么hebeidezhi.com louisvuitton什么牌子hcv8jop3ns5r.cn 不羁放纵是什么意思hcv7jop9ns8r.cn 旦角是什么意思hcv8jop8ns2r.cn
百度