傲娇是什么意思| 一什么家| 前置胎盘是什么原因引起的| 开业送什么好| 支原体感染用什么药| 作精是什么意思| 三唑磷主要打什么虫| 3月7日是什么星座| 血脂高看什么科| 为什么老是掉头发| 脑供血不足有什么症状| 拉黑一个人意味着什么| 诸葛亮是什么星座| 尿崩症吃什么药最有效| 甲基硫菌灵治什么病| 雅丹是什么意思| 什么是胎记| 屈原为什么投江| 睡觉流口水吃什么药| 大便里急后重什么意思| 什么东东是什么意思| 红油是什么油| 红头文件是什么意思| 咖啡对身体有什么危害| 淋巴细胞绝对值偏高是什么原因| 避孕药吃多了有什么副作用| 滑膜疝是一种什么病| 喉咙看什么科| 祀是什么意思| 橙子什么季节成熟| 攒肚是什么意思| instagram是什么意思| 胎儿腹围偏大说明什么| 病毒性疣是什么病| 肝有钙化灶是什么意思| 兔子不吃窝边草是什么生肖| 儿童乘坐高铁需要什么证件| 蝙蝠来家里是什么预兆| 属虎的和什么属相最配| 直肠炎吃什么药效果好| 营业执照什么时候年审| 梦见自己坐火车是什么意思| 宣是什么意思| 儿童办护照需要什么证件| 指甲发青是什么原因| 雨打棺材是什么征兆| 耳鸣是什么引起的| 毛囊炎是什么引起的| 雄性激素过高是什么原因| 耳顺是什么意思| 结膜水肿用什么眼药水| 局灶肠化是什么意思| 月经期间同房有什么危害| 母亲属虎孩子属什么好| 紫色和蓝色混合是什么颜色| 樟脑是什么| 肝实质回声密集是什么意思| 吃菌子不能吃什么| 弱阳性和阳性有什么区别| 提手旁的字与什么有关| 甲状腺功能减退是什么原因引起的| adr是什么激素| 刺五加配什么药治失眠| 咳嗽出血是什么原因| 阳气不足是什么意思| 干咳吃什么药最有效| 西瓜有什么品种| 骨质密度增高是什么意思| 脸为什么肿| 寿司用什么米做好吃| 存款准备金率下调意味着什么| 低回声是什么意思| 为什么一到晚上就咳嗽| 葡萄和提子有什么区别| 肚子疼去医院挂什么科| 钠高是什么原因| 晚上睡觉腿抽筋是什么原因| 放屁多是什么原因| 农历6月是什么月| 弯的直的什么意思| 什么粉可以代替木薯粉| 手脚发麻是什么原因| 什么菜降血压效果最好| 72年五行属什么| 脱靶是什么意思| 角加斗念什么| 慕斯蛋糕是什么意思| 脾胃不和吃什么中成药| 曲安奈德是什么药| 为所当为什么意思| 12月16号是什么星座| 耳朵发炎吃什么消炎药| 多发息肉是什么意思| 脂肪肝是什么引起的| 高脂血症是什么意思| 来大姨妈不能吃什么水果| 梅毒长什么样| 男性看下面挂什么科室| 梦见自己的手镯断了什么意思| 一什么鸟窝| ECG是什么| 血红蛋白低吃什么药| 大暑是什么时候| 中耳炎用什么药| 6月22号是什么星座| 鱼加完念什么| 书卷气是什么意思| 18罗汉都叫什么名字| 什么像什么比喻句| 兴渠是什么菜| 吃榴莲不能吃什么东西| 沙眼是什么| alpha什么意思| 唇周围长痘痘是什么原因| 经常便秘是什么原因| 什么是亲情| 寿者相什么意思| 鲶鱼效应是什么意思| 女宝胶囊的作用和功效是什么| 什么是活性叶酸| 脑供血不足检查什么项目| 焖是什么意思| 泌乳素高是什么原因| 梦见大火烧山是什么意思| 常吃火龙果有什么好处| 梦见买狗是什么意思| 尿路感染吃什么消炎药| 炉甘石是什么东西| 宝宝乳糖不耐受喝什么奶粉比较好| 咳嗽完想吐是什么原因| 什么万| 芳菲的意思是什么| 月经肚子疼是什么原因| hpv检查什么项目| 甘草长什么样| 手机壳什么材质好| 阔腿裤配什么鞋子好看| 什么是纯净物| 孩子流黄鼻涕是什么原因| 新蒜什么时候上市| 中秋节吃什么| ppl是什么意思| xl代表什么尺码| 单身为什么中指戴戒指| 老公梦见蛇是什么预兆| 甲醇是什么| 干涸是什么意思| 阴超可以检查出什么| 不服气是什么意思| 美国为什么要打伊拉克| 氯化钠是什么东西| 厍是什么意思| 甲壳虫吃什么食物| 人出现幻觉是什么原因| 胃溃疡适合吃什么水果| 收缩压是什么意思| 红烧肉配什么菜好吃| 什么玩意儿| 什么是太监| 内分泌科属于什么科| 肾阳虚的表现是什么| 体温偏低是什么原因| 少女怀春是什么意思| 为什么会甲减| 脾胃虚寒吃什么| 牙齿酸痛什么原因| 心肌炎做什么检查| 动脉硬化挂什么科| 腋窝疼痛挂什么科| 瓠子是什么| 医院属于什么性质的单位| 数位板是什么| 馋肉是身体里缺什么| 甲状腺吃什么药好| 什么可以补气血| 按摩椅什么牌子最好| 舞象之年是什么意思| 格物穷理是什么意思| 孙耀威为什么被雪藏| 满载而归的载是什么意思| 陈醋泡花生米有什么功效| 吃完桃子不能吃什么| 为什么会得盆腔炎| cd代表什么意思| 牙疼有什么办法| 蟋蟀吃什么食物| 手肿是什么病的前兆| 梦见很多牛是什么兆头| 文胸36码是什么尺寸| cea升高是什么意思| 除湿气吃什么| 血氧饱和度是什么| 纱布是什么材质| 低聚果糖是什么东西| 人中深的女人代表什么| 用什么点豆腐最健康| 吹空调感冒咳嗽吃什么药| 虹视是什么意思| 七夕节吃什么| 艾地苯醌片治什么病| degaia是什么牌子| 马克笔什么牌子好| 一月2日是什么星座| 什么样的女人不能娶| 疱疹吃什么药| 调理内分泌失调吃什么药效果好| 屏幕总成带框和不带框有什么区别| 喉咙痛上火吃什么药效果最好| 帅t是什么意思| 散光是什么症状| 脚趾甲发白是什么原因| 软组织肿胀是什么意思| 乳腺发炎吃什么消炎药| 金鱼吃什么| 东宫是什么意思| 喝黑枸杞有什么作用和功效| 低能儿是什么意思| 扁桃体长什么样| 仙人跳什么意思| 碳14呼气试验阳性是什么意思| 鼎字五行属什么| aba是什么意思| 肾上腺是什么| 五行海中金是什么意思| 四查十对的内容是什么| 老年人腿疼是什么原因引起的| 丝瓜只开花不结果是什么原因| 胆结石是什么| 富贵包挂什么科| 正畸和矫正有什么区别| 女孩为什么难得午时贵| 赤砂糖是什么糖| 满月是什么意思| 女人什么时候停经| hpv是什么病毒| 儿童过敏性鼻炎吃什么药| 儿童c反应蛋白高说明什么| 铁娘子是什么意思| 婴儿眼屎多是什么原因| 喉咙有异物感看什么科| 张国荣什么时候去世的| 反复低烧是什么原因| 鼻塞有脓鼻涕吃什么药| 抿嘴是什么意思| 客单价什么意思| 左肾小结石是什么意思| domestic是什么意思| 霜降是什么季节| 地瓜什么时候成熟| 喝黑咖啡有什么好处| 女性阴道痒是什么原因| 自卑是什么意思| 疟疾病的症状是什么样| naco是什么牌子| 身上搓出来的泥是什么| 江西有什么景点| 大姨妈一直不干净是什么原因| 吃黄精有什么好处| 中间细胞百分比偏高是什么意思| 什么原因导致月经量少| 属狗是什么命| 转奶是什么意思| 军衔是什么意思| 岌岌可危是什么意思| 百度Jump to content

新华网技能人才融媒体平台

From Wikipedia, the free encyclopedia
Internet history timeline
百度 相比之下,全北现代6个进球中,外援只占1个;济州联3个进球中,韩国球员打进2个;水原三星的进球者是韩国人李记帝;蔚山现代2个进球也有一个属于本土球员。

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information. IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

The first major version of IP, Internet Protocol version 4 (IPv4), is the dominant protocol of the Internet. Its successor is Internet Protocol version 6 (IPv6), which has been in increasing deployment on the public Internet since around 2006.[1]

Function

[edit]
Encapsulation of application data carried by UDP to a link protocol frame

The Internet Protocol is responsible for addressing host interfaces, encapsulating data into datagrams (including fragmentation and reassembly) and routing datagrams from a source host interface to a destination host interface across one or more IP networks.[2] For these purposes, the Internet Protocol defines the format of packets and provides an addressing system.

Each datagram has two components: a header and a payload. The IP header includes a source IP address, a destination IP address, and other metadata needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation.

IP addressing entails the assignment of IP addresses and associated parameters to host interfaces. The address space is divided into subnets, involving the designation of network prefixes. IP routing is performed by all hosts, as well as routers, whose main function is to transport packets across network boundaries. Routers communicate with one another via specially designed routing protocols, either interior gateway protocols or exterior gateway protocols, as needed for the topology of the network.[3]

Addressing methods

[edit]
Routing schemes
Unicast

Broadcast

Multicast

Anycast

There are four principal addressing methods in the Internet Protocol:

  • Unicast delivers a message to a single specific node using a one-to-one association between a sender and destination: each destination address uniquely identifies a single receiver endpoint.
  • Broadcast delivers a message to all nodes in the network using a one-to-all association; a single datagram (or packet) from one sender is routed to all of the possibly multiple endpoints associated with the broadcast address. The network automatically replicates datagrams as needed to reach all the recipients within the scope of the broadcast, which is generally an entire network subnet.
  • Multicast delivers a message to a group of nodes that have expressed interest in receiving the message using a one-to-many-of-many or many-to-many-of-many association; datagrams are routed simultaneously in a single transmission to many recipients. Multicast differs from broadcast in that the destination address designates a subset, not necessarily all, of the accessible nodes.
  • Anycast delivers a message to any one out of a group of nodes, typically the one nearest to the source using a one-to-one-of-many[4] association where datagrams are routed to any single member of a group of potential receivers that are all identified by the same destination address. The routing algorithm selects the single receiver from the group based on which is the nearest according to some distance or cost measure.

Version history

[edit]
A timeline for the development of the transmission control Protocol TCP and Internet Protocol IP
First Internet demonstration, linking the ARPANET, PRNET, and SATNET on November 22, 1977

In May 1974, the Institute of Electrical and Electronics Engineers (IEEE) published a paper entitled "A Protocol for Packet Network Intercommunication".[5] The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among network nodes. A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol and User Datagram Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known as the Department of Defense (DoD) Internet Model and Internet protocol suite, and informally as TCP/IP.

The following Internet Experiment Note (IEN) documents describe the evolution of the Internet Protocol into the modern version of IPv4:[6]

  • IEN 2 Comments on Internet Protocol and TCP (August 1977) describes the need to separate the TCP and Internet Protocol functionalities (which were previously combined). It proposes the first version of the IP header, using 0 for the version field.
  • IEN 26 A Proposed New Internet Header Format (February 1978) describes a version of the IP header that uses a 1-bit version field.
  • IEN 28 Draft Internetwork Protocol Description Version 2 (February 1978) describes IPv2.
  • IEN 41 Internetwork Protocol Specification Version 4 (June 1978) describes the first protocol to be called IPv4. The IP header is different from the modern IPv4 header.
  • IEN 44 Latest Header Formats (June 1978) describes another version of IPv4, also with a header different from the modern IPv4 header.
  • IEN 54 Internetwork Protocol Specification Version 4 (September 1978) is the first description of IPv4 using the header that would become standardized in 1980 as RFC 760.
  • IEN 80
  • IEN 111
  • IEN 123
  • IEN 128/RFC 760 (1980)

IP versions 1 to 3 were experimental versions, designed between 1973 and 1978.[7] Versions 2 and 3 supported variable-length addresses ranging between 1 and 16 octets (between 8 and 128 bits).[8] An early draft of version 4 supported variable-length addresses of up to 256 octets (up to 2048 bits)[9] but this was later abandoned in favor of a fixed-size 32-bit address in the final version of IPv4. This remains the dominant internetworking protocol in use in the Internet Layer; the number 4 identifies the protocol version, carried in every IP datagram. IPv4 is defined in RFC 791 (1981).

Version number 5 was used by the Internet Stream Protocol, an experimental streaming protocol that was not adopted.[7]

The successor to IPv4 is IPv6. IPv6 was a result of several years of experimentation and dialog during which various protocol models were proposed, such as TP/IX (RFC 1475), PIP (RFC 1621) and TUBA (TCP and UDP with Bigger Addresses, RFC 1347). Its most prominent difference from version 4 is the size of the addresses. While IPv4 uses 32 bits for addressing, yielding c. 4.3 billion (4.3×109) addresses, IPv6 uses 128-bit addresses providing c. 3.4×1038 addresses. Although adoption of IPv6 has been slow, as of January 2023, most countries in the world show significant adoption of IPv6,[10] with over 41% of Google's traffic being carried over IPv6 connections.[11]

The assignment of the new protocol as IPv6 was uncertain until due diligence assured that IPv6 had not been used previously.[12] Other Internet Layer protocols have been assigned version numbers,[13] such as 7 (IP/TX), 8 and 9 (historic). Notably, on April 1, 1994, the IETF published an April Fools' Day RfC about IPv9.[14] IPv9 was also used in an alternate proposed address space expansion called TUBA.[15] A 2004 Chinese proposal for an IPv9 protocol appears to be unrelated to all of these, and is not endorsed by the IETF.

IP version numbers

[edit]

As the version number is carried in a 4-bit field, only numbers 0–15 can be assigned.

IP version Description Year Status
0 Internet Protocol, pre-v4 N/A Reserved[16]
1 Experimental version 1973 Obsolete
2 Experimental version 1977 Obsolete
3 Experimental version 1978 Obsolete
4 Internet Protocol version 4 (IPv4)[17] 1981 Active
5 Internet Stream Protocol (ST) 1979 Obsolete; superseded by ST-II or ST2
Internet Stream Protocol (ST-II or ST2)[18] 1987 Obsolete; superseded by ST2+
Internet Stream Protocol (ST2+) 1995 Obsolete
6 Simple Internet Protocol (SIP) N/A Obsolete; merged into IPv6 in 1995[16]
Internet Protocol version 6 (IPv6)[19] 1995 Active
7 TP/IX The Next Internet (IPv7)[20] 1993 Obsolete[21]
8 P Internet Protocol (PIP)[22] 1994 Obsolete; merged into SIP in 1993
9 TCP and UDP over Bigger Addresses (TUBA) 1992 Obsolete[23]
IPv9 1994 April Fools' Day joke[24]
Chinese IPv9 2004 Abandoned
10–14 N/A N/A Unassigned
15 Version field sentinel value N/A Reserved

Reliability

[edit]

The design of the Internet protocol suite adheres to the end-to-end principle, a concept adapted from the CYCLADES project. Under the end-to-end principle, the network infrastructure is considered inherently unreliable at any single network element or transmission medium and is dynamic in terms of the availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity, the intelligence in the network is located in the end nodes.

As a consequence of this design, the Internet Protocol only provides best-effort delivery and its service is characterized as unreliable. In network architectural parlance, it is a connectionless protocol, in contrast to connection-oriented communication. Various fault conditions may occur, such as data corruption, packet loss and duplication. Because routing is dynamic, meaning every packet is treated independently, and because the network maintains no state based on the path of prior packets, different packets may be routed to the same destination via different paths, resulting in out-of-order delivery to the receiver.

All fault conditions in the network must be detected and compensated by the participating end nodes. The upper layer protocols of the Internet protocol suite are responsible for resolving reliability issues. For example, a host may buffer network data to ensure correct ordering before the data is delivered to an application.

IPv4 provides safeguards to ensure that the header of an IP packet is error-free. A routing node discards packets that fail a header checksum test. Although the Internet Control Message Protocol (ICMP) provides notification of errors, a routing node is not required to notify either end node of errors. IPv6, by contrast, operates without header checksums, since current link layer technology is assumed to provide sufficient error detection.[25][26]

[edit]

The dynamic nature of the Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested. One of the technical constraints is the size of data packets possible on a given link. Facilities exist to examine the maximum transmission unit (MTU) size of the local link and Path MTU Discovery can be used for the entire intended path to the destination.[27]

The IPv4 internetworking layer automatically fragments a datagram into smaller units for transmission when the link MTU is exceeded. IP provides re-ordering of fragments received out of order.[28] An IPv6 network does not perform fragmentation in network elements, but requires end hosts and higher-layer protocols to avoid exceeding the path MTU.[29]

The Transmission Control Protocol (TCP) is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and ICMP disregard MTU size, thereby forcing IP to fragment oversized datagrams.[30]

Security

[edit]

During the design phase of the ARPANET and the early Internet, the security aspects and needs of a public, international network were not adequately anticipated. Consequently, many Internet protocols exhibited vulnerabilities highlighted by network attacks and later security assessments. In 2008, a thorough security assessment and proposed mitigation of problems was published.[31] The IETF has been pursuing further studies.[32]

See also

[edit]

References

[edit]
  1. ^ The Economics of Transition to Internet Protocol version 6 (IPv6) (Report). OECD Digital Economy Papers. OECD. 2025-08-07. doi:10.1787/5jxt46d07bhc-en. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  2. ^ Charles M. Kozierok, The TCP/IP Guide, archived from the original on 2025-08-07, retrieved 2025-08-07
  3. ^ "IP Technologies and Migration — EITC". www.eitc.org. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  4. ^ Go?cień, Ró?a; Walkowiak, Krzysztof; Klinkowski, Miros?aw (2025-08-07). "Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic". Computer Networks. 79: 148–165. doi:10.1016/j.comnet.2014.12.004. ISSN 1389-1286.
  5. ^ Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. Archived (PDF) from the original on 2025-08-07. Retrieved 2025-08-07. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  6. ^ "Internet Experiment Note Index". www.rfc-editor.org. Retrieved 2025-08-07.
  7. ^ a b Stephen Coty (2025-08-07). "Where is IPv1, 2, 3, and 5?". Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  8. ^ Postel, Jonathan B. (February 1978). "Draft Internetwork Protocol Specification Version 2" (PDF). RFC Editor. IEN 28. Retrieved 6 October 2022. Archived 16 May 2019 at the Wayback Machine
  9. ^ Postel, Jonathan B. (June 1978). "Internetwork Protocol Specification Version 4" (PDF). RFC Editor. IEN 41. Retrieved 11 February 2024. Archived 16 May 2019 at the Wayback Machine
  10. ^ Strowes, Stephen (4 Jun 2021). "IPv6 Adoption in 2021". RIPE Labs. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  11. ^ "IPv6". Google. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  12. ^ Mulligan, Geoff. "It was almost IPv7". O'Reilly. Archived from the original on 5 July 2015. Retrieved 4 July 2015.
  13. ^ "IP Version Numbers". Internet Assigned Numbers Authority. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  14. ^ RFC 1606: A Historical Perspective On The Usage Of IP Version 9. April 1, 1994.
  15. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. doi:10.17487/RFC1347. RFC 1347.
  16. ^ a b Jeff Doyle; Jennifer Carroll (2006). Routing TCP/IP. Vol. 1 (2 ed.). Cisco Press. p. 8. ISBN 978-1-58705-202-6.
  17. ^ J. Postel, ed. (September 1981). INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. IETF. doi:10.17487/RFC0791. STD 5. RFC 791. IEN 128, 123, 111, 80, 54, 44, 41, 28, 26. Internet Standard 5. Obsoletes RFC 760. Updated by RFC 1349, 2474 and 6864.
  18. ^ L. Delgrossi; L. Berger, eds. (August 1995). Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version ST2+. Network Working Group. doi:10.17487/RFC1819. RFC 1819. Historic. Obsoletes RFC 1190 and IEN 119.
  19. ^ S. Deering; R. Hinden (July 2017). Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force. doi:10.17487/RFC8200. STD 86. RFC 8200. Internet Standard 86. Obsoletes RFC 2460.
  20. ^ R. Ullmann (June 1993). TP/IX: The Next Internet. Network Working Group. doi:10.17487/RFC1475. RFC 1475. Historic. Obsoleted by RFC 6814.
  21. ^ C. Pignataro; F. Gont (November 2012). Formally Deprecating Some IPv4 Options. Internet Engineering Task Force. doi:10.17487/RFC6814. ISSN 2070-1721. RFC 6814. Proposed Standard. Obsoletes RFC 1385, 1393, 1475 and 1770.
  22. ^ P. Francis (May 1994). Pip Near-term Architecture. Network Working Group. doi:10.17487/RFC1621. RFC 1621. Historic.
  23. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. Network Working Group. doi:10.17487/RFC1347. RFC 1347. Historic.
  24. ^ J. Onions (1 April 1994). A Historical Perspective On The Usage Of IP Version 9. Network Working Group. doi:10.17487/RFC1606. RFC 1606. Informational. This is an April Fools' Day Request for Comments.
  25. ^ RFC 1726 section 6.2
  26. ^ RFC 2460
  27. ^ Rishabh, Anand (2012). Wireless Communication. S. Chand Publishing. ISBN 978-81-219-4055-9. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  28. ^ Siyan, Karanjit. Inside TCP/IP, New Riders Publishing, 1997. ISBN 1-56205-714-6
  29. ^ Bill Cerveny (2025-08-07). "IPv6 Fragmentation". Arbor Networks. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  30. ^ Parker, Don (2 November 2010). "Basic Journey of a Packet". Symantec. Symantec. Archived from the original on 20 January 2022. Retrieved 4 May 2014.
  31. ^ Fernando Gont (July 2008), Security Assessment of the Internet Protocol (PDF), CPNI, archived from the original (PDF) on 2025-08-07
  32. ^ F. Gont (July 2011). Security Assessment of the Internet Protocol version 4. doi:10.17487/RFC6274. RFC 6274.
[edit]
肚子左下方是什么器官 ict是什么意思 喉咙痛吃什么药好得最快 包皮是什么样子图片 左腿发麻是什么病征兆
牙龈出血什么原因 武昌鱼是什么鱼 安然无恙是什么意思 儿童热感冒吃什么药 精神科主要看什么病
杏林春暖的杏林指什么 kipper什么意思 白发缺少什么维生素 aojo眼镜什么档次 狗狗中毒了用什么办法可以解毒
老来得子是什么意思 脸肿是什么原因引起的 剑桥英语和新概念英语有什么区别 creative是什么意思 违心的话是什么意思
阿尔卑斯是什么意思hcv9jop2ns4r.cn 健脾丸和归脾丸有什么区别hcv8jop1ns6r.cn 胃病吃什么药最好hcv9jop3ns9r.cn 小缺血灶是什么意思hcv9jop4ns6r.cn 吃什么补蛋白质最快hcv9jop5ns1r.cn
感染幽门螺杆菌吃什么药hcv9jop6ns5r.cn 过肺是什么意思hcv7jop9ns0r.cn 白细胞多是什么原因hcv7jop9ns5r.cn ct胸部平扫检查出什么inbungee.com 什么是信仰hcv9jop6ns9r.cn
手五行属什么hcv9jop0ns5r.cn 大姨妈喝什么汤好hcv9jop6ns4r.cn 关节疼挂什么科hcv8jop8ns1r.cn 中药学学什么hcv8jop5ns0r.cn 小孩抵抗力差吃什么提高免疫力hcv8jop1ns8r.cn
黑色素通过什么排出来hcv8jop9ns1r.cn 草木皆兵什么意思xinmaowt.com 老农民韩美丽结局是什么hcv8jop9ns7r.cn 夏天穿什么鞋bjhyzcsm.com 左上腹是什么器官wzqsfys.com
百度