女性阴道痒是什么原因| 属马跟什么属相犯冲| 胃穿孔有什么症状| 油光满面是什么意思| 纸尿裤nb是什么码| 男生什么情况想种草莓| 皂角米是什么东西| 一什么帽子| 大便一粒粒是什么原因| 男人屁股翘代表什么| 前夕是什么意思| 钮钴禄什么意思| 为什么黑色吸热| 4月7日什么星座| 膝盖痛吃什么| 化妆水是干什么用的| kenwood是什么牌子| 秋天可以干什么| 微信号为什么会封号| 黄色有什么黄| 21岁属什么| 绿加红是什么颜色| 弱精症有什么症状表现| 孕酮低吃什么好提高| 舌头发黄是什么问题| 看头部挂什么科| 小儿便秘吃什么药| 翠玉是什么玉| 眼皮浮肿是什么原因引起的| 头疼呕吐是什么原因| 建日是什么意思| 曼月乐是什么| 肌酐高说明什么问题| skirt什么意思| 移动增值业务费是什么| 坐蜡什么意思| 先河是什么意思| 油为什么会浮在水面上| 幽门螺杆菌阳性是什么意思| 去冰和常温有什么区别| 闹觉是什么意思| 淋巴结有血流信号预示着什么| 什么水果最好吃| 什么叫夏至| 什么叫中位数| 咳嗽能吃什么| 粉条炖什么好吃| 酉读什么| 吃什么食物补脾虚| 12月出生的是什么星座| 黄精是什么东西| 晚上睡不着觉吃什么药| 阴道炎是什么引起的| 心肌梗塞是什么原因造成的| 一动就大汗淋漓是什么原因| 血糖有点高吃什么食物好| 考试为什么要用2b铅笔| 肥皂剧是什么| 太阳病是什么意思| 黄花菜长什么样子| 冰点是什么意思| 九地是什么中药| 拉绿色的屎是什么原因| 伊拉克是什么人种| 波霸是什么| 检查乳房挂什么科| 11.22什么星座| 杜鹃花什么时候开| 钙果是什么水果| 赖氨酸是什么| 泌尿是什么意思| 酸性体质是什么意思| 初音未来是什么| 1970年属狗是什么命| 什么东西止血最快最好| 可见一什么| 热火朝天是什么意思| other什么意思| 心脏搭桥后最怕什么| 狮子座女和什么星座最配| 头晕恶心什么原因| 压脚背有什么好处| 吃什么对皮肤好| 返点是什么意思| 九二年属什么| 梦见偷桃子是什么意思| 什么血型是万能血型| sad什么意思| 吃什么除体内湿气最快| 木耳菜不能和什么一起吃| 河豚有毒为什么还吃| 统筹支付是什么意思| 五脏六腑指的是什么| 卡地亚属于什么档次| 荔枝代表什么寓意| 球蛋白偏高是什么意思| 头疼恶心想吐吃什么药| 一什么秋千| bn是什么意思| 新生儿晚上哭闹不睡觉是什么原因| 女性尿里带血是什么原因| 什么是导管| 间接胆红素高是什么意思| 什么的树林| 秉字五行属什么| 理想主义是什么意思| 什么叫做光合作用| 支元体阳性是什么意思| 脱敏是什么意思| 晗是什么意思| s1隐裂是什么意思| 脂肪肝吃什么中药| sigma是什么牌子| 香蕉不能和什么一起吃| 滚去掉三点水念什么| 喉咙发炎吃什么食物| 宝宝胀气是什么原因引起的| nt检查需要注意什么| 什么是空调病| 律的右边读什么| 调节肠道菌群吃什么药| 痰多是什么原因引起的| 禁忌什么意思| 仓鼠突然死了是为什么| roa胎位是什么意思| 一见钟情是什么感觉| 什么什么之财| 体重kg是什么意思| 醉酒当歌什么意思| 999是什么意思| 肝脏纤维化是什么意思| 头皮痛什么原因| 火命适合佩戴什么首饰| 有缘无分什么意思| 十字架代表什么| 10月2号是什么星座| 一什么方式| 眩晕症吃什么药好| 骨赘形成是什么意思| 彼岸花代表什么星座| 植物油是什么| 藿香正气水有什么功效| 狗不理是什么意思| 鸡蛋胶是什么鱼胶| c反应蛋白高吃什么药| 怀孕有什么感觉| 电轴左偏什么意思| 无畏布施是什么意思| 什么的船只| 9月25号什么星座| 阴雨连绵是什么意思| 什么是封闭针| 甲醛中毒有什么症状| 打葡萄糖点滴有什么用| 什么地溜达| 经期吃什么补血| 压测是什么意思| 手足口病有什么症状| 什么啤酒好喝| 苹果充电口叫什么| 脚趾头麻木是什么原因引起的| 枸杞树长什么样| 6月22日是什么星座| 胃热口干口苦口臭吃什么药好| 摇粒绒是什么面料| 7月26日是什么日子| 夜明珠代表什么生肖| 什么挑担子忠心耿耿| 血小板低吃什么补的快| 百香果什么季节成熟| 一竖一点念什么| 海参崴买什么便宜| 为什么嘴唇会发紫| 什么钙片最好| 10月30日什么星座| 大姨妈不来是什么原因| 胚胎停育是什么原因造成的| 氢化植物油是什么| 海带和什么不能一起吃| 挑什么| 纯净水和矿泉水有什么区别| 机油用什么能洗掉| 男士内裤买什么牌子好| 无量寿经讲的是什么| sassy是什么意思| 年轻人手抖是什么原因| 野生蜂蜜有什么好处和作用| 掂过碌蔗是什么意思| 天网是什么意思| 胺碘酮又叫什么名字| 为什么上小厕会有刺痛感| 线差是什么意思| 女人为什么不会怀孕| 可定是什么药| 猪肚和什么煲汤最好| 保健品是什么意思| 节节草有什么功效| 小孩子流鼻血是什么原因| 谁与争锋是什么意思| 意欲何为是什么意思| 艾滋病有什么症状图片| 官运是什么意思| 白癜风是什么样子的| olay是什么品牌| 痤疮是由什么引起的| 梦见下大雨是什么意思| 杉字五行属什么| 呵是什么意思| 扁桃体发炎引起的发烧吃什么药| 住院需要带什么东西| 奶油色是什么颜色| 容易淤青是什么原因| 油菜籽什么时间种| 流鼻血是什么病| 6月份怀孕预产期是什么时候| 肝郁脾虚吃什么中成药| 羞辱什么意思| 尿发绿是什么原因| 眼袋肿是什么原因| 7月15是什么节日| 茶壶嘴为什么不能对着人| 淘米水洗脸有什么作用与功效| 撕脱性骨折什么意思| 乌鱼子是什么意思| 洁白丸治什么类型胃病| 1999年出生的属什么| 直肠下垂有什么症状| 珠海有什么好玩的| 西兰花和什么菜搭配| 风是什么结构| 贱人的意思是什么意思| 食物中毒有什么症状| ricoh什么牌子| 今天穿什么| 堪忧是什么意思| 梦见自己和别人吵架是什么意思| 坐蜡什么意思| 巾帼不让须眉是什么意思| 玻色因是什么| 头晕在医院挂什么科| 你有什么| 鱼有念什么| 胡子变白是什么原因| 84消毒液不能和什么一起用| 苦荞茶和什么搭配最好| 屁股上长痘是什么原因| 勾股定理是什么意思| 女人梦到火是什么预兆| 菜籽油是什么菜籽做的| 特长写什么| 罗森是什么| 王字加一笔是什么字| 红烧排骨用什么排骨比较好| comeon什么意思| 超脱是什么意思| 右耳朵发烫是什么征兆| 玉米须加什么治痛风| 菌痢的症状是什么样| 海带排骨汤海带什么时候放| 补脑吃什么| 丙二醇是什么东西| 洋葱和什么相克| 舌苔发青是什么原因| 咖啡豆是什么动物粪便| 百度Jump to content

武汉这些以城市和名人命名的路,竟有这么多故

From Wikipedia, the free encyclopedia
百度 他们没有办法把所有的活干掉,他们一般不会在早期站队,很多时候我们还会有一些合作,比如说他们投资的一些东西,他们也希望我们的一些建议和判断,因为早期领域我们终究还是有独特经验。

In real analysis and approximation theory, the Kolmogorov–Arnold representation theorem (or superposition theorem) states that every multivariate continuous function can be represented as a superposition of continuous single-variable functions.

The works of Vladimir Arnold and Andrey Kolmogorov established that if f is a multivariate continuous function, then f can be written as a finite composition of continuous functions of a single variable and the binary operation of addition.[1] More specifically,

where and .

There are proofs with specific constructions.[2]

It solved a more constrained form of Hilbert's thirteenth problem, so the original Hilbert's thirteenth problem is a corollary.[3][4][5] In a sense, they showed that the only true continuous multivariate function is the sum, since every other continuous function can be written using univariate continuous functions and summing.[6]:?180?

History

[edit]

The Kolmogorov–Arnold representation theorem is closely related to Hilbert's 13th problem. In his Paris lecture at the International Congress of Mathematicians in 1900, David Hilbert formulated 23 problems which in his opinion were important for the further development of mathematics.[7] The 13th of these problems dealt with the solution of general equations of higher degrees. It is known that for algebraic equations of degree 4 the solution can be computed by formulae that only contain radicals and arithmetic operations. For higher orders, Galois theory shows us that the solutions of algebraic equations cannot be expressed in terms of basic algebraic operations. It follows from the so called Tschirnhaus transformation that the general algebraic equation

can be translated to the form . The Tschirnhaus transformation is given by a formula containing only radicals and arithmetic operations and transforms. Therefore, the solution of an algebraic equation of degree can be represented as a superposition of functions of two variables if and as a superposition of functions of variables if . For the solution is a superposition of arithmetic operations, radicals, and the solution of the equation .

A further simplification with algebraic transformations seems to be impossible which led to Hilbert's conjecture that "A solution of the general equation of degree 7 cannot be represented as a superposition of continuous functions of two variables". This explains the relation of Hilbert's thirteenth problem to the representation of a higher-dimensional function as superposition of lower-dimensional functions. In this context, it has stimulated many studies in the theory of functions and other related problems by different authors.[8]

Variants

[edit]

A variant of Kolmogorov's theorem that reduces the number of outer functions is due to George Lorentz.[9] He showed in 1962 that the outer functions can be replaced by a single function . More precisely, Lorentz proved the existence of functions , , such that

David Sprecher [10] replaced the inner functions by one single inner function with an appropriate shift in its argument. He proved that there exist real values , a continuous function , and a real increasing continuous function with , for , such that

Phillip A. Ostrand [11] generalized the Kolmogorov superposition theorem to compact metric spaces. For let be compact metric spaces of finite dimension and let . Then there exists continuous functions and continuous functions such that any continuous function is representable in the form

Kolmogorov–Arnold representation theorem and its aforementioned variants also hold for discontinuous multivariate functions.[12]

Continuous form

[edit]

In its classic form Kolmogorov–Arnold representation has two layers, where the first, called inner layer, is vector to vector mapping

and the second, outer layer, is vector to scalar mapping

The transition from discrete to continuous form for inner layer gives equation of Urysohn with 3D kernel

same transition for the outer layer gives its particular case

The generalization of Kolmogorov-Arnold representation known as Kolmogorov-Arnold network in continuous form is a chain of Urysohn equations, where outer equation also may return function or a vector as multiple related targets.

Urysohn equation was introduced in 1924 for a different purpose, as function to function mapping with the problem of finding function , provided and .

Limitations

[edit]

The theorem does not hold in general for complex multi-variate functions, as discussed here.[4] Furthermore, the non-smoothness of the inner functions and their "wild behavior" has limited the practical use of the representation,[13] although there is some debate on this.[14]

Applications

[edit]

In the field of machine learning, there have been various attempts to use neural networks modeled on the Kolmogorov–Arnold representation.[15][16][17][18][19][20][21] In these works, the Kolmogorov–Arnold theorem plays a role analogous to that of the universal approximation theorem in the study of multilayer perceptrons.

Proof

[edit]

Here one example is proved.[22] A proof for the case of functions depending on two variables is given, as the generalization is immediate.

Setup

[edit]
  • Let be the unit interval .
  • Let be the set of continuous functions of type . It is a function space with supremum norm (it is a Banach space).
  • Let be a continuous function of type , and let be the supremum of it on .
  • Let be a positive irrational number. Its exact value is irrelevant.

We say that a 5-tuple is a Kolmogorov–Arnold tuple if and only if for any there exists a continuous function , such that In the notation, we have the following:

TheoremThe Kolmogorov–Arnold tuples make up an open and dense subset of .

Proof

[edit]

Fix a . We show that a certain subset is open and dense: There exists continuous such that , and We can assume that with no loss of generality.

By continuity, the set of such 5-tuples is open in . It remains to prove that they are dense.

The key idea is to divide into an overlapping system of small squares, each with a unique address, and define to have the appropriate value at each address.

Grid system

[edit]

Let . For any , for all large , we can discretize into a continuous function satisfying the following properties:

  • is constant on each of the intervals .
  • These values are different rational numbers.
  • .

This function creates a grid address system on , divided into streets and blocks. The blocks are of form .

An example construction of and the corresponding grid system.

Since is continuous on , it is uniformly continuous. Thus, we can take large enough, so that varies by less than on any block.

On each block, has a constant value. The key property is that, because is irrational, and is rational on the blocks, each block has a different value of .

So, given any 5-tuple , we construct such a 5-tuple . These create 5 overlapping grid systems.

Enumerate the blocks as , where is the -th block of the grid system created by . The address of this block is , for any . By adding a small and linearly independent irrational number (the construction is similar to that of the Hamel basis) to each of , we can ensure that every block has a unique address.

By plotting out the entire grid system, one can see that every point in is contained in 3 to 5 blocks, and 2 to 0 streets.

Construction of g

[edit]

For each block , if on all of then define ; if on all of then define . Now, linearly interpolate between these defined values. It remains to show this construction has the desired properties.

For any , we consider three cases.

If , then by uniform continuity, on every block that contains the point . This means that on 3 to 5 of the blocks, and have an unknown value on 2 to 0 of the streets. Thus, we have givingSimilarly for .

If , then since , we still have

Baire category theorem

[edit]

Iterating the above construction, then applying the Baire category theorem, we find that the following kind of 5-tuples are open and dense in : There exists a sequence of such that , , etc. This allows their sum to be defined: , which is still continuous and bounded, and it satisfies Since has a countable dense subset, we can apply the Baire category theorem again to obtain the full theorem.

Extensions

[edit]

The above proof generalizes for -dimensions: Divide the cube into interlocking grid systems, such that each point in the cube is on to blocks, and to streets. Now, since , the above construction works.

Indeed, this is the best possible value.

Theorem (Sternfeld, 1985 [23])Let be a compact metric space with , and let be an embedding such that every can be represented as

Then .

A relatively short proof is given in [24] via dimension theory.

In another direction of generality, more conditions can be imposed on the Kolmogorov–Arnold tuples.

TheoremThere exists a Kolmogorov–Arnold tuple where each function is strictly monotonically increasing.

The proof is given in.[25]

(Vitu?kin, 1954)[26] showed that the theorem is false if we require all functions to be continuously differentiable. The theorem remains true if we require all to be 1-Lipschitz continuous.[5]

References

[edit]
  1. ^ Bar-Natan, Dror. "Dessert: Hilbert's 13th Problem, in Full Colour".
  2. ^ Braun, Jürgen; Griebel, Michael (2009). "On a constructive proof of Kolmogorov's superposition theorem". Constructive Approximation. 30 (3): 653–675. doi:10.1007/s00365-009-9054-2.
  3. ^ Khesin, Boris A.; Tabachnikov, Serge L. (2014). Arnold: Swimming Against the Tide. American Mathematical Society. p. 165. ISBN 978-1-4704-1699-7.
  4. ^ a b Akashi, Shigeo (2001). "Application of ?-entropy theory to Kolmogorov—Arnold representation theorem". Reports on Mathematical Physics. 48 (1–2): 19–26. Bibcode:2001RpMP...48...19A. doi:10.1016/S0034-4877(01)80060-4.
  5. ^ a b Morris, Sidney A. (2025-08-05). "Hilbert 13: Are there any genuine continuous multivariate real-valued functions?". Bulletin of the American Mathematical Society. 58 (1): 107–118. doi:10.1090/bull/1698. ISSN 0273-0979.
  6. ^ Diaconis, Persi; Shahshahani, Mehrdad (1984). "On nonlinear functions of linear combinations" (PDF). SIAM Journal on Scientific Computing. 5 (1): 175–191. doi:10.1137/0905013. Archived from the original (PDF) on 2025-08-05.
  7. ^ Hilbert, David (1902). "Mathematical problems". Bulletin of the American Mathematical Society. 8 (10): 461–462. doi:10.1090/S0002-9904-1902-00923-3.
  8. ^ Jürgen Braun, On Kolmogorov's Superposition Theorem and Its Applications, SVH Verlag, 2010, 192 pp.
  9. ^ Lorentz, G. G. (1962). "Metric entropy, widths, and superpositions of functions". American Mathematical Monthly. 69 (6): 469–485. doi:10.1080/00029890.1962.11989915.
  10. ^ Sprecher, David A. (1965). "On the Structure of Continuous Functions of Several Variables". Transactions of the American Mathematical Society. 115: 340–355. doi:10.2307/1994273. JSTOR 1994273.
  11. ^ Ostrand, Phillip A. (1965). "Dimension of metric spaces and Hilbert's problem 13". Bulletin of the American Mathematical Society. 71 (4): 619–622. doi:10.1090/s0002-9904-1965-11363-5.
  12. ^ Ismailov, Vugar (2008). "On the representation by linear superpositions". Journal of Approximation Theory. 151 (2): 113–125. arXiv:1501.05268. doi:10.1016/j.jat.2007.09.003.
  13. ^ Girosi, Federico; Poggio, Tomaso (1989). "Representation Properties of Networks: Kolmogorov's Theorem is Irrelevant". Neural Computation. 1 (4): 465–469. doi:10.1162/neco.1989.1.4.465.
  14. ^ K?rková, Věra (1991). "Kolmogorov's Theorem is Relevant". Neural Computation. 3 (4): 617–622. doi:10.1162/neco.1991.3.4.617. PMID 31167327.
  15. ^ Lin, Ji-Nan; Unbehauen, Rolf (January 1993). "On the Realization of a Kolmogorov Network". Neural Computation. 5 (1): 18–20. doi:10.1162/neco.1993.5.1.18.
  16. ^ K?ppen, Mario (2022). "On the Training of a Kolmogorov Network". Artificial Neural Networks — ICANN 2002. Lecture Notes in Computer Science. Vol. 2415. pp. 474–479. doi:10.1007/3-540-46084-5_77. ISBN 978-3-540-44074-1.
  17. ^ KAN: Kolmogorov-Arnold Networks. (Ziming Liu et al.)
  18. ^ Manon Bischoff (May 28, 2024). "An Alternative to Conventional Neural Networks Could Help Reveal What AI Is Doing behind the Scenes". Scientific American. Archived from the original on May 29, 2024. Retrieved May 29, 2024.
  19. ^ Ismayilova, Aysu; Ismailov, Vugar (August 2024). "On the Kolmogorov Neural Networks". Neural Networks. 176 (Article 106333). arXiv:2311.00049. doi:10.1016/j.neunet.2024.106333. PMID 38688072.
  20. ^ Steve Nadis (September 11, 2024). "Novel Architecture Makes Neural Networks More Understandable". Quanta Magazine.
  21. ^ Polar, Andrew; Poluektov, Michael (March 2021). "A deep machine learning algorithm for construction of the Kolmogorov–Arnold representation". Engineering Applications of Artificial Intelligence. 99. arXiv:2001.04652. doi:10.1016/j.engappai.2020.104137.
  22. ^ This proof closely follows Morris, Sidney (January 2021). "Hilbert 13: Are there any genuine continuous multivariate real-valued functions?". Bulletin of the American Mathematical Society. 58 (1): 107–118. doi:10.1090/bull/1698. ISSN 0273-0979.
  23. ^ Sternfeld, Y. (2025-08-05). "Dimension, superposition of functions and separation of points, in compact metric spaces". Israel Journal of Mathematics. 50 (1): 13–53. doi:10.1007/BF02761117. ISSN 1565-8511.
  24. ^ Levin, Michael (2025-08-05). "Dimension and superposition of continuous functions". Israel Journal of Mathematics. 70 (2): 205–218. doi:10.1007/BF02807868. ISSN 1565-8511.
  25. ^ Hedberg, Torbj?rn (2006) [1971]. "Appendix 2: The Kolmogorov superposition theorem". In Shapiro, Harold S. (ed.). Topics in Approximation Theory. Lecture Notes in Mathematics. Vol. 187. Springer. pp. 267–275, (33– of PDF). doi:10.1007/BFb0058976. ISBN 978-3-540-36497-9.
  26. ^ Vitu?kin, A.G. (1954). "On Hilbert's Thirteenth Problem". Doklady Akad. Nauk SSSR. New Series (in Russian). 95 (4): 701–4.

Sources

[edit]

Further reading

[edit]
  • S. Ya. Khavinson, Best Approximation by Linear Superpositions (Approximate Nomography), AMS Translations of Mathematical Monographs (1997)
六冲是什么意思 打鼾是什么原因引起的 中专什么时候报名 pt950是什么材质 什么是马赛克
副乳有什么危害吗 愚蠢是什么意思 减肥头晕是什么原因 什么长而去 bi是什么意思
贾蓉和王熙凤是什么关系 同一首歌为什么停播了 老人喝什么牛奶好 疏通血管吃什么药 腿抽筋缺什么
四九城是什么意思 周杰伦什么病 九九年属什么 热淋是什么意思 salsa什么意思
蜘蛛代表什么生肖hcv8jop4ns2r.cn 男人吃秋葵有什么好处hcv8jop1ns0r.cn 野合什么意思hcv8jop9ns1r.cn 挑眉是什么意思hcv8jop5ns6r.cn 1989年出生的是什么命hcv9jop6ns3r.cn
男人右眉毛里有痣代表什么hcv8jop8ns9r.cn 指甲有竖纹是什么原因tiangongnft.com 尿道感染用什么药hcv8jop6ns5r.cn 减肥喝什么茶好hcv8jop9ns8r.cn 什么数字最听话hcv7jop9ns3r.cn
肺泡是什么hcv7jop6ns7r.cn 什么叫私生饭hcv7jop6ns0r.cn 肺气虚吃什么食物hcv9jop1ns2r.cn 月经期间吃什么水果好hcv9jop1ns8r.cn 辣皮子是什么hcv8jop8ns5r.cn
纯净水是什么水hcv9jop5ns6r.cn 戴字五行属什么youbangsi.com 骨密度增高是什么意思hcv8jop4ns9r.cn 中国的国球是什么球hcv9jop6ns3r.cn 21年是什么生肖年hcv8jop7ns5r.cn
百度