看牙齿挂什么科| 脚发胀是什么前兆| 前脚底板痛是什么原因| 痢疾吃什么药| 顺流而下什么意思| 氨纶是什么面料优缺点| 心肌缺血吃什么中成药| 经常长溃疡是什么原因引起的| 脂溢性皮炎用什么药| 态生两靥之愁中靥指什么| 1997年的牛是什么命| 农历十月十八是什么星座| 勃起不硬吃什么药| 什么龙可以横行霸道| 画画可以画什么| otc属于什么药| 古井贡酒是什么香型| 开天门是什么意思| 4月11号是什么星座| 宵夜吃什么| 贷款是什么意思| 凉瓜是什么瓜| 孕妇吃红枣对胎儿有什么好处| 步步生花是什么意思| 什么药治失眠最有效| 猫尿床是因为什么原因| 咽喉炎吃什么药| 大汗淋漓是什么意思| 脚背抽筋是什么原因引起的| 吉可以加什么偏旁| 自渎什么意思| 梦见买鞋子是什么意思| 小腹一直疼是什么原因| 为什么不建议儿童做胃镜| kksk是什么意思| 脑萎缩是什么原因| 父母坟上长树意味什么| 山药有什么营养| 梦到打死蛇是什么意思| 菊花可以和什么一起泡水喝| 买什么保险最实用| 黄鼠狼怕什么| 空调睡眠是什么意思| 大理有什么好玩的| 喝红茶有什么效果| 泥鳅吃什么饲料| 支气管炎是什么症状| 汪小菲什么星座| 精字五行属什么| 世风日下什么意思| 灵芝长什么样子图片| 妇炎康片有什么副作用| 为什么会黄体功能不足| 早晚体重一样说明什么| 四肢肌力5级什么意思| 郎酒是什么香型| 脑子萎缩是什么原因造成的| 吃完饭打嗝是什么原因| 康膜的功效是什么| 小便尿不出来什么原因| 马上好药膏主治什么| 高脂血症是什么病| 舌头溃疡吃什么药最好| 公历是什么历| 王字旁的字跟什么有关| 第一次什么感觉| ec什么意思| 肝主疏泄是什么意思| 雪莲是什么| 肠系膜淋巴结炎吃什么药最有效| 羟苯乙酯是什么| 葡挞跟蛋挞有什么区别| 烧烤烤什么好吃| 抗凝是什么意思| 中联办是什么级别| 翘首以盼是什么意思| 淋巴结肿吃什么消炎药| 念珠菌阳性是什么意思| 耳声发射检查是什么| 孕32周需要做什么检查| 结核病是什么| 类风湿关节炎吃什么药效果好| 南极和北极有什么区别| 车厘子是什么季节的| 梦到别人怀孕了是什么意思| 心肌缺血吃什么药最好| 喉咙发苦是什么原因造成的| 下呼吸道感染吃什么药| 咳嗽咳到吐是什么原因| 什么是传染性软疣| 接吻是什么样的感觉| 黑芝麻不能和什么一起吃| 冬枣不能和什么一起吃| 玉兰油适合什么年龄| 乙肝五项145阳性是什么意思| 休克疗法是什么意思| 条索灶是什么意思| 想留不能留才最寂寞是什么歌| 子宫复旧是什么意思| 女人肾虚吃什么好得快| 东莞有什么区| 东海龙王叫什么名字| 吃什么东西会误测怀孕| 睡觉口苦是什么原因| 什么是内分泌| 8月8号什么星座| 甲亢病是什么原因引起的| 膈是什么器官| 心焦是什么意思| 2006年出生的是什么命| 责成是什么意思| 腱鞘炎什么症状| 皮疹和湿疹有什么区别| 棕色用什么颜色调出来| 爱马仕是什么品牌| 做噩梦被吓醒预示什么| 手足口病忌口什么食物| 吃什么排便最快| 桃子像什么| 此言差矣是什么意思| 唾液酸酶阳性是什么意思| 芋头是什么| 孕妇可以吃什么感冒药| 益生菌什么时间段吃效果好| 磨玻璃影是什么意思| 农历六月初十是什么日子| 智齿什么时候拔最好| 小满是什么意思| 乌鱼是什么鱼| 俊五行属性是什么| 舌苔厚白中间有裂纹吃什么药| 肌无力吃什么药最好| 土生金是什么意思| 保护嗓子长期喝什么茶| 右边肋骨疼是什么原因| 经常流鼻血是什么情况| 三五成群是什么意思| 久站腰疼是什么原因| 女性胃炎有什么症状| 沙拉是什么| 间断是什么意思| 白醋和小苏打一起用起什么效果| 5月3日是什么星座| club monaco是什么牌子| 疮痈是什么意思| 胃溃疡吃什么药好| 耳浴是什么意思| 天生丽质难自弃是什么意思| 昆虫记是什么类型的书| 不放屁吃什么药能通气| 一个口一个坐念什么| 暗无天日是什么意思| 生水是什么意思| 朱砂有什么功效| 孕早期吃什么有利于胎心胎芽发育| 小精灵是什么意思| 看睾丸去医院挂什么科| gummy是什么意思| 你会不会突然的出现是什么歌| 德艺双馨什么意思| 百合不能和什么一起吃| 大便臭是什么原因| 乳头疼吃什么药| 硒是什么元素| 权衡利弊的意思是什么| 低钾血症吃什么食补| 身体出汗多是什么原因| 声音的高低叫什么| 牛肉不能和什么食物一起吃| pop什么意思| 代言是什么意思| winner什么意思| 京东白条什么时候还款| 博字五行属什么| 水压低用什么花洒| 花椒吃多了对身体有什么影响| 宝宝发烧是什么原因引起的| 健康证需要什么| 稍纵即逝什么意思| 早上空腹喝淡盐水有什么好处| 八月一日是什么日子| 喝什么去湿气| 圣母什么意思| 药流吃什么药| 什么叫业力| 子宫肌瘤吃什么食物好| 丝瓜什么人不能吃| 养精蓄锐是什么意思| 22点是什么时辰| 钙化灶什么意思| 头总出汗是什么原因| 子宫回声欠均匀是什么意思| is是什么组织| 深圳吃什么| 七叶一枝花主治什么病| 仙人板板 是什么意思| 亚硝酸盐阴性是什么意思| 居里夫人发明了什么| 血凝是什么意思| 两面人是什么意思| 五月二十三日是什么星座| 孕妇羊水少吃什么补的快| 睾丸痛吃什么药| 吃芒果后不能吃什么| 为什么会得肺结核| 孕中期失眠是什么原因| 女人喝胶原蛋白有什么好处| 减肥晚餐吃什么好| 什么是abo文| 纯阴八字为什么要保密| 肝血管瘤是什么病| 有故事的人是什么意思| 妇女是什么意思| 梦见输钱是什么预兆| 女性分泌物增多发黄是什么原因| 低聚木糖是什么| 武松的性格特点是什么| 拖鞋什么材质的好| 景气是什么意思| 枇杷是什么季节的水果| 五十是什么之年| 阴道有腥味是什么原因| 私生是什么意思| 卡其色裙子配什么颜色上衣好看| 五行水多代表什么| coco什么意思| 什么品种的芒果最好吃| 台湾什么时候回归| 缺硒有什么症状| 颈椎病挂什么科最好| 湿疹是什么样子| 锅底灰能治什么病| 高血压不能吃什么| 5月30日是什么星座| 经常便秘是什么原因| 智叟是什么意思| 孩子吃什么容易长高| 西瓜有什么功效| slow什么意思| 佛性是什么意思| 什么人容易得心脏病| 耳鸣是什么| 左手经常发麻是什么原因引起的| 什么是肇事逃逸| 2月5号什么星座| 椰子煲汤放什么材料| 命中劫是什么意思| 尿失禁用什么药好| 什么叫同工同酬| 额头长痘痘什么原因| 无犯罪证明需要什么材料| 气色是什么意思| 51岁属什么| 染指什么意思| 美业是什么| 新疆人是什么人种| 非分之想是什么意思| 乌龟能吃什么水果| 陈小春什么星座| fwb是什么意思| 治疗早泄吃什么药| 相知相惜是什么意思| 欢喜是什么意思| ha什么意思| 百度Jump to content

颈动脉彩超能查出什么

From Wikipedia, the free encyclopedia
A dual-gate MOSFET and schematic symbol
百度 着眼全面落实党对人民解放军和其他武装力量的绝对领导,贯彻落实党中央关于调整武警部队领导指挥体制的决定,按照军是军、警是警、民是民原则……海警属武警序列,今后由中央军委统一指挥。

A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET). The most widely used multi-gate devices are the FinFET (fin field-effect transistor) and the GAAFET (gate-all-around field-effect transistor), which are non-planar transistors, or 3D transistors.

Multi-gate transistors are one of the several strategies being developed by MOS semiconductor manufacturers to create ever-smaller microprocessors and memory cells, colloquially referred to as extending Moore's law (in its narrow, specific version concerning density scaling, exclusive of its careless historical conflation with Dennard scaling).[1] Development efforts into multigate transistors have been reported by the Electrotechnical Laboratory, Toshiba, Grenoble INP, Hitachi, IBM, TSMC, UC Berkeley, Infineon Technologies, Intel, AMD, Samsung Electronics, KAIST, Freescale Semiconductor, and others, and the ITRS predicted correctly that such devices will be the cornerstone of sub-32 nm technologies.[2] The primary roadblock to widespread implementation is manufacturability, as both planar and non-planar designs present significant challenges, especially with respect to lithography and patterning. Other complementary strategies for device scaling include channel strain engineering, silicon-on-insulator-based technologies, and high-κ/metal gate materials.

Dual-gate MOSFETs are commonly used in very high frequency (VHF) mixers and in sensitive VHF front-end amplifiers. They are available from manufacturers such as Motorola, NXP Semiconductors, and Hitachi.[3][4][5]

Types

[edit]
Several multigate models

Dozens of multigate transistor variants may be found in the literature. In general, these variants may be differentiated and classified in terms of architecture (planar vs. non-planar design) and the number of channels/gates (2, 3, or 4).

Planar double-gate MOSFET (DGMOS)

[edit]

A planar double-gate MOSFET (DGMOS) employs conventional planar (layer-by-layer) manufacturing processes to create double-gate MOSFET (metal–oxide–semiconductor field-effect transistor) devices, avoiding more stringent lithography requirements associated with non-planar, vertical transistor structures. In planar double-gate transistors the drain–source channel is sandwiched between two independently fabricated gate/gate-oxide stacks. The primary challenge in fabricating such structures is achieving satisfactory self-alignment between the upper and lower gates.[6]

FlexFET

[edit]

FlexFET is a planar, independently double-gated transistor with a damascene metal top gate MOSFET and an implanted JFET bottom gate that are self-aligned in a gate trench. This device is highly scalable due to its sub-lithographic channel length; non-implanted ultra-shallow source and drain extensions; non-epi raised source and drain regions; and gate-last flow. FlexFET is a true double-gate transistor in that (1) both the top and bottom gates provide transistor operation, and (2) the operation of the gates is coupled such that the top gate operation affects the bottom gate operation and vice versa.[7] FlexFET was developed and is manufactured by American Semiconductor, Inc.

FinFET

[edit]
A double-gate FinFET device
An SOI FinFET MOSFET
The NVIDIA GTX 1070 from 2016, which uses a 16 nm FinFET-based Pascal chip manufactured by TSMC

FinFET (fin field-effect transistor) is a type of non-planar transistor, or "3D" transistor (not to be confused with 3D microchips).[8] The FinFET is a variation on traditional MOSFETs distinguished by the presence of a thin silicon "fin" inversion channel on top of the substrate, allowing the gate to make two points of contact: the left and right sides of the fin. The thickness of the fin (measured in the direction from source to drain) determines the effective channel length of the device. The wrap-around gate structure provides a better electrical control over the channel and thus helps in reducing the leakage current and overcoming other short-channel effects.

The first FinFET transistor type was called a depleted lean-channel transistor or "DELTA" transistor, which was first fabricated by Hitachi Central Research Laboratory's Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto and Eiji Takeda in 1989.[9][10][11] In the late 1990s, Digh Hisamoto began collaborating with an international team of researchers on further developing DELTA technology, including TSMC's Chenming Hu and a UC Berkeley research team including Tsu-Jae King Liu, Jeffrey Bokor, Xuejue Huang, Leland Chang, Nick Lindert, S. Ahmed, Cyrus Tabery, Yang-Kyu Choi, Pushkar Ranade, Sriram Balasubramanian, A. Agarwal and M. Ameen. In 1998, the team developed the first N-channel FinFETs and successfully fabricated devices down to a 17 nm process. The following year, they developed the first P-channel FinFETs.[12] They coined the term "FinFET" (fin field-effect transistor) in a December 2000 paper.[13]

In current usage the term FinFET has a less precise definition. Among microprocessor manufacturers, AMD, IBM, and Freescale describe their double-gate development efforts as FinFET[14] development, whereas Intel avoids using the term when describing their closely related tri-gate architecture.[15] In the technical literature, FinFET is used somewhat generically to describe any fin-based, multigate transistor architecture regardless of number of gates. It is common for a single FinFET transistor to contain several fins, arranged side by side and all covered by the same gate, that act electrically as one, to increase drive strength and performance.[16] The gate may also cover the entirety of the fin(s).

A 25 nm transistor operating on just 0.7 volt was demonstrated in December 2002 by TSMC (Taiwan Semiconductor Manufacturing Company). The "Omega FinFET" design is named after the similarity between the Greek letter omega (Ω) and the shape in which the gate wraps around the source/drain structure. It has a gate delay of just 0.39 picosecond (ps) for the N-type transistor and 0.88 ps for the P-type.

In 2004, Samsung Electronics demonstrated a "Bulk FinFET" design, which made it possible to mass-produce FinFET devices. They demonstrated dynamic random-access memory (DRAM) manufactured with a 90 nm Bulk FinFET process.[12] In 2006, a team of Korean researchers from the Korea Advanced Institute of Science and Technology (KAIST) and the National Nano Fab Center developed a 3 nm transistor, the world's smallest nanoelectronic device, based on FinFET technology.[17][18] In 2011, Rice University researchers Masoud Rostami and Kartik Mohanram demonstrated that FINFETs can have two electrically independent gates, which gives circuit designers more flexibility to design with efficient, low-power gates.[19]

In 2012, Intel started using FinFETs for its future commercial devices. Leaks suggest that Intel's FinFET has an unusual shape of a triangle rather than rectangle, and it is speculated that this might be either because a triangle has a higher structural strength and can be more reliably manufactured or because a triangular prism has a higher area-to-volume ratio than a rectangular prism, thus increasing switching performance.[20]

In September 2012, GlobalFoundries announced plans to offer a 14-nanometer process technology featuring FinFET three-dimensional transistors in 2014.[21] The next month, the rival company TSMC announced start early or "risk" production of 16 nm FinFETs in November 2013.[22]

In March 2014, TSMC announced that it is nearing implementation of several 16 nm FinFETs die-on wafers manufacturing processes:[23]

  • 16 nm FinFET (Q4 2014),
  • 16 nm FinFET+ (cca[clarify] Q4 2014),
  • 16 nm FinFET "Turbo" (estimated in 2015–2016).

AMD released GPUs using their Polaris chip architecture and made on 14 nm FinFET in June 2016.[24] The company has tried to produce a design to provide a "generational jump in power efficiency" while also offering stable frame rates for graphics, gaming, virtual reality, and multimedia applications.[25]

In March 2017, Samsung and eSilicon announced the tapeout for production of a 14 nm FinFET ASIC in a 2.5D package.[26][27]

Tri-gate transistor

[edit]

A tri-gate transistor, also known as a triple-gate transistor, is a type of MOSFET with a gate on three of its sides.[28] A triple-gate transistor was first demonstrated in 1987, by a Toshiba research team including K. Hieda, Fumio Horiguchi and H. Watanabe. They realized that the fully depleted (FD) body of a narrow bulk Si-based transistor helped improve switching due to a reduced body-bias effect.[29][30] In 1992, a triple-gate MOSFET was demonstrated by IBM researcher Hon-Sum Wong.[31]

Intel announced this technology in September 2002.[32] Intel announced "triple-gate transistors" which maximize "transistor switching performance and decreases power-wasting leakage". A year later, in September 2003, AMD announced that it was working on similar technology at the International Conference on Solid State Devices and Materials.[33][34] No further announcements of this technology were made until Intel's announcement in May 2011, although it was stated at IDF 2011, that they demonstrated a working SRAM chip based on this technology at IDF 2009.[35]

On April 23, 2012, Intel released a new line of CPUs, termed Ivy Bridge, which feature tri-gate transistors.[36][37] Intel has been working on its tri-gate architecture since 2002, but it took until 2011 to work out mass-production issues. The new style of transistor was described on May 4, 2011, in San Francisco.[38] It was announced that Intel's factories were expected to make upgrades over 2011 and 2012 to be able to manufacture the Ivy Bridge CPUs.[39] It was announced that the new transistors would also be used in Intel's Atom chips for low-powered devices.[38]

Tri-gate fabrication was used by Intel for the non-planar transistor architecture used in Ivy Bridge, Haswell and Skylake processors. These transistors employ a single gate stacked on top of two vertical gates (a single gate wrapped over three sides of the channel), allowing essentially three times the surface area for electrons to travel. Intel reports that their tri-gate transistors reduce leakage and consume far less power than previous transistors. This allows up to 37% higher speed or a power consumption at under 50% of the previous type of transistors used by Intel.[40][41]

Intel explains: "The additional control enables as much transistor current flowing as possible when the transistor is in the 'on' state (for performance), and as close to zero as possible when it is in the 'off' state (to minimize power), and enables the transistor to switch very quickly between the two states (again, for performance)."[42] Intel has stated that all products after Sandy Bridge will be based upon this design.

The term tri-gate is sometimes used generically to denote any multigate FET with three effective gates or channels.[43]

Gate-all-around FET (GAAFET)

[edit]

Gate-all-around FETs (GAAFETs) are the successor to FinFETs, as they can work at sizes below 7 nm. They were used by IBM to demonstrate 5 nm process technology.

GAAFET, also known as a surrounding-gate transistor (SGT),[44][45] is similar in concept to a FinFET except that the gate material surrounds the channel region on all sides. Depending on design, gate-all-around FETs can have two or four effective gates. Gate-all-around FETs have been successfully characterized both theoretically and experimentally.[46][47] They have also been successfully etched onto nanowires of InGaAs, which have a higher electron mobility than silicon.[48]

A gate-all-around (GAA) MOSFET was first demonstrated in 1988, by a Toshiba research team including Fujio Masuoka, Hiroshi Takato, and Kazumasa Sunouchi, who demonstrated a vertical nanowire GAAFET which they called a "surrounding gate transistor" (SGT).[49][50][45] Masuoka, best known as the inventor of flash memory, later left Toshiba and founded Unisantis Electronics in 2004 to research surrounding-gate technology along with Tohoku University.[51] In 2006, a team of Korean researchers from the Korea Advanced Institute of Science and Technology (KAIST) and the National Nano Fab Center developed a 3 nm transistor, the world's smallest nanoelectronic device, based on gate-all-around (GAA) FinFET technology.[52][18] GAAFET transistors may make use of high-k/metal gate materials. GAAFETs with up to 7 nanosheets have been demonstrated which allow for improved performance and/or reduced device footprint. The widths of the nanosheets in GAAFETs is controllable which more easily allows for the adjustment of device characteristics.[53]

As of 2020, Samsung and Intel have announced plans to mass produce GAAFET transistors (specifically MBCFET transistors) while TSMC has announced that they will continue to use FinFETs in their 3 nm node,[54] despite TSMC developing GAAFET transistors.[55]

Multi-bridge channel (MBC) FET

[edit]

A multi-bridge channel FET (MBCFET) is similar to a GAAFET except for the use of nanosheets instead of nanowires.[56] MBCFET is a word mark (trademark) registered in the U.S. to Samsung Electronics.[57] Samsung plans on mass producing MBCFET transistors at the 3 nm node for its foundry customers.[58] Intel is also developing RibbonFET, a variation of MBCFET "nanoribbon" transistors.[59][60] Unlike FinFETs, both the width and the number of the sheets can be varied to adjust drive strength or the amount of current the transistor can drive at a given voltage. The sheets often vary from 8 to 50 nanometers in width. The width of the nanosheets is known as Weff, or effective width.[61][62]

Industry need

[edit]

Planar transistors have been the core of integrated circuits for several decades, during which the size of the individual transistors has steadily decreased. As the size decreases, planar transistors increasingly suffer from the undesirable short-channel effect, especially "off-state" leakage current, which increases the idle power required by the device.[63]

In a multigate device, the channel is surrounded by several gates on multiple surfaces. Thus it provides better electrical control over the channel, allowing more effective suppression of "off-state" leakage current. Multiple gates also allow enhanced current in the "on" state, also known as drive current. Multigate transistors also provide a better analog performance due to a higher intrinsic gain and lower channel length modulation.[64] These advantages translate to lower power consumption and enhanced device performance. Nonplanar devices are also more compact than conventional planar transistors, enabling higher transistor density which translates to smaller overall microelectronics.

Integration challenges

[edit]

The primary challenges to integrating nonplanar multigate devices into conventional semiconductor manufacturing processes include:

  • Fabrication of a thin silicon "fin" tens of nanometers wide
  • Fabrication of matched gates on multiple sides of the fin

Compact modeling

[edit]
Different FinFET structures, which can be modeled by BSIM-CMG

BSIMCMG106.0.0,[65] officially released on March 1, 2012 by UC Berkeley BSIM Group, is the first standard model for FinFETs. BSIM-CMG is implemented in Verilog-A. Physical surface-potential-based formulations are derived for both intrinsic and extrinsic models with finite body doping. The surface potentials at the source and drain ends are solved analytically with poly-depletion and quantum mechanical effects. The effect of finite body doping is captured through a perturbation approach. The analytic surface potential solution agrees closely with the 2-D device simulation results. If the channel doping concentration is low enough to be neglected, computational efficiency can be further improved by a setting a specific flag (COREMOD = 1).

All of the important multi-gate (MG) transistor behavior is captured by this model. Volume inversion is included in the solution of Poisson's equation, hence the subsequent I–V formulation automatically captures the volume-inversion effect. Analysis of electrostatic potential in the body of MG MOSFETs provided a model equation for short-channel effects (SCE). The extra electrostatic control from the end gates (top/bottom gates) (triple or quadruple-gate) is also captured in the short-channel model.

See also

[edit]

References

[edit]
  1. ^ Risch, L. "Pushing CMOS Beyond the Roadmap", Proceedings of ESSCIRC, 2005, p. 63.
  2. ^ Table39b Archived September 27, 2007, at the Wayback Machine
  3. ^ "Motorola 3N201 Datasheet - Datasheetspdf.com". Datasheetpdf.com. Retrieved 2025-08-06.
  4. ^ "3SK45 Datasheet - Alldatasheet.com" (PDF). Retrieved 2025-08-06.
  5. ^ "BF1217WR Datasheet" (PDF). Retrieved 2025-08-06.
  6. ^ Wong, H-S.; Chan, K.; Taur, Y. (December 10, 1997). "Self-aligned (Top and bottom) double-gate MOSFET with a 25 nm thick silicon channel". International Electron Devices Meeting. IEDM Technical Digest. pp. 427–430. doi:10.1109/IEDM.1997.650416. ISBN 978-0-7803-4100-5. ISSN 0163-1918. S2CID 20947344.
  7. ^ Wilson, D.; Hayhurst, R.; Oblea, A.; Parke, S.; Hackler, D. "Flexfet: Independently-Double-Gated SOI Transistor With Variable Vt and 0.5V Operation Achieving Near Ideal Subthreshold Slope" SOI Conference, 2007 IEEE International [1]
  8. ^ "What is Finfet?". Computer Hope. April 26, 2017. Retrieved 4 July 2019.
  9. ^ "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Archived from the original on September 9, 2018. Retrieved 4 July 2019.
  10. ^ Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. pp. 11 & 39. ISBN 978-0-387-71751-7.
  11. ^ Hisamoto, D.; Kaga, T.; Kawamoto, Y.; Takeda, E. (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET". International Technical Digest on Electron Devices Meeting. pp. 833–836. doi:10.1109/IEDM.1989.74182. S2CID 114072236.
  12. ^ a b Tsu-Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Retrieved 9 July 2019.
  13. ^ Hisamoto, Digh; Hu, Chenming; Bokor, J.; King, Tsu-Jae; Anderson, E.; et al. (December 2000). "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm". IEEE Transactions on Electron Devices. 47 (12): 2320–2325. Bibcode:2000ITED...47.2320H. CiteSeerX 10.1.1.211.204. doi:10.1109/16.887014.
  14. ^ "AMD Newsroom". Amd.com. 2025-08-06. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  15. ^ "Intel Silicon Technology Innovations". Intel.com. Archived from the original on September 3, 2011. Retrieved 2025-08-06.
  16. ^ Shimpi, Anand Lal. "Intel Announces first 22nm 3D Tri-Gate Transistors, Shipping in 2H 2011". www.anandtech.com.
  17. ^ "Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012
  18. ^ a b Lee, Hyunjin; et al. (2006). "Sub-5nm All-Around Gate FinFET for Ultimate Scaling". 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. pp. 58–59. doi:10.1109/VLSIT.2006.1705215. hdl:10203/698. ISBN 978-1-4244-0005-8. S2CID 26482358.
  19. ^ Rostami, M.; Mohanram, K. (2011). "Dual-Vth$ Independent-Gate FinFETs for Low Power Logic Circuits". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 30 (3): 337–349. doi:10.1109/TCAD.2010.2097310. hdl:1911/72088. S2CID 2225579.
  20. ^ "Intel's FinFETs are less fin and more triangle". EE Times. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  21. ^ "Globalfoundries looks leapfrog fab rivals with new process". EE Times. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  22. ^ "TSMC taps ARM's V8 on road to 16 nm FinFET". EE Times. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  23. ^ Josephine Lien; Steve Shen (31 March 2014). "TSMC likely to launch 16 nm FinFET+ process at year-end 2014, and "FinFET Turbo" later in 2015-16". DIGITIMES. Retrieved 2025-08-06.
  24. ^ Smith, Ryan. "The AMD Radeon RX 480 Preview: Polaris Makes Its Mainstream Mark". Retrieved 2025-08-06.
  25. ^ "AMD Demonstrates Revolutionary 14nm FinFET Polaris GPU Architecture". AMD. 4 January 2016. Retrieved 2025-08-06.
  26. ^ "High-performance, high-bandwidth IP platform for Samsung 14LPP process technology". 2025-08-06.
  27. ^ "Samsung and eSilicon Taped Out 14nm Network Processor with Rambus 28G SerDes Solution". 2025-08-06.
  28. ^ Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. p. 12. ISBN 978-0-387-71751-7.
  29. ^ Hieda, K.; Horiguchi, Fumio; Watanabe, H.; Sunouchi, Kazumasa; Inoue, I.; Hamamoto, Takeshi (December 1987). "New effects of trench isolated transistor using side-wall gates". 1987 International Electron Devices Meeting. pp. 736–739. doi:10.1109/IEDM.1987.191536. S2CID 34381025.
  30. ^ Brozek, Tomasz (2017). Micro- and Nanoelectronics: Emerging Device Challenges and Solutions. CRC Press. pp. 116–7. ISBN 978-1-351-83134-5.
  31. ^ Wong, Hon-Sum (December 1992). "Gate-current injection and surface impact ionization in MOSFET's with a gate induced virtual drain". International Technical Digest on Electron Devices Meeting. pp. 151–154. doi:10.1109/IEDM.1992.307330. ISBN 0-7803-0817-4. S2CID 114058374.
  32. ^ High Performance Non-Planar Tri-gate Transistor Architecture; Dr. Gerald Marcyk. Intel, 2002
  33. ^ [2][dead link]
  34. ^ "AMD Details Its Triple-Gate Transistors". Xbitlabs.com. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  35. ^ "IDF 2011: Intel Looks to Take a Bite Out of ARM, AMD With 3D FinFET Tech". DailyTech. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  36. ^ Miller, Michael J. "Intel Releases Ivy Bridge: First Processor with "Tri-Gate" Transistor". PC Magazine. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  37. ^ "Intel Reinvents Transistors Using New 3-D Structure". Intel. Retrieved 5 April 2011.
  38. ^ a b "Transistors go 3D as Intel re-invents the microchip". Ars Technica. 5 May 2011. Retrieved 7 May 2011.
  39. ^ Murray, Matthew (4 May 2011). "Intel's New Tri-Gate Ivy Bridge Transistors: 9 Things You Need to Know". PC Magazine. Retrieved 7 May 2011.
  40. ^ Cartwright J. (2011). "Intel enters the third dimension". Nature. doi:10.1038/news.2011.274. Retrieved 2025-08-06.
  41. ^ Intel to Present on 22-nm Tri-gate Technology at VLSI Symposium (ElectroIQ 2012) Archived April 15, 2012, at the Wayback Machine
  42. ^ "Below 22nm, spacers get unconventional: Interview with ASM". ELECTROIQ. Retrieved 2025-08-06.
  43. ^ Dan Grabham (2025-08-06). "Intel's Tri-Gate transistors: everything you need to know". TechRadar. Retrieved 2025-08-06.
  44. ^ Claeys, C.; Murota, J.; Tao, M.; Iwai, H.; Deleonibus, S. (2015). ULSI Process Integration 9. The Electrochemical Society. p. 109. ISBN 978-1-60768-675-0.
  45. ^ a b Ishikawa, Fumitaro; Buyanova, Irina (2017). Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications. CRC Press. p. 457. ISBN 978-1-315-34072-2.
  46. ^ Singh, N.; Agarwal, A.; Bera, L. K.; Liow, T. Y.; Yang, R.; Rustagi, S. C.; Tung, C. H.; Kumar, R.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. (2006). "High-Performance fully depleted Silicon Nanowire Gate-All-Around CMOS devices". IEEE Electron Device Letters. 27 (5): 383–386. Bibcode:2006IEDL...27..383S. doi:10.1109/LED.2006.873381. ISSN 0741-3106. S2CID 45576648.
  47. ^ Dastjerdy, E.; Ghayour, R.; Sarvari, H. (August 2012). "Simulation and analysis of the frequency performance of a new silicon nanowire MOSFET structure". Physica E. 45: 66–71. Bibcode:2012PhyE...45...66D. doi:10.1016/j.physe.2012.07.007.
  48. ^ Gu, J. J.; Liu, Y. Q.; Wu, Y. Q.; Colby, R.; Gordon, R. G.; Ye, P. D. (December 2011). "First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach" (PDF). 2011 International Electron Devices Meeting. pp. 33.2.1–33.2.4. arXiv:1112.3573. doi:10.1109/IEDM.2011.6131662. ISBN 978-1-4577-0505-2. S2CID 2116042. Retrieved 2025-08-06.
  49. ^ Masuoka, Fujio; Takato, Hiroshi; Sunouchi, Kazumasa; Okabe, N.; Nitayama, Akihiro; Hieda, K.; Horiguchi, Fumio (December 1988). "High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs". Technical Digest., International Electron Devices Meeting. pp. 222–225. doi:10.1109/IEDM.1988.32796. S2CID 114148274.
  50. ^ Brozek, Tomasz (2017). Micro- and Nanoelectronics: Emerging Device Challenges and Solutions. CRC Press. p. 117. ISBN 978-1-351-83134-5.
  51. ^ "Company Profile". Unisantis Electronics. Archived from the original on 22 February 2007. Retrieved 17 July 2019.
  52. ^ "Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012, retrieved 17 July 2019
  53. ^ LaPedus, Mark (25 January 2021). "New Transistor Structures At 3nm/2nm". Semiconductor Engineering. Retrieved 23 December 2022.
  54. ^ Cutress, Dr Ian. "Where are my GAA-FETs? TSMC to Stay with FinFET for 3nm". www.anandtech.com.
  55. ^ "TSMC Plots an Aggressive Course for 3 nm Lithography and Beyond - ExtremeTech". www.extremetech.com.
  56. ^ Cutress, Ian. "Samsung Announces 3 nm GAA MBCFET PDK, Version 0.1". www.anandtech.com.
  57. ^ "MBCFET Trademark of Samsung Electronics Co., Ltd. - Registration Number 5495359 - Serial Number 87447776 :: Justia Trademarks". trademarks.justia.com. Retrieved 2025-08-06.
  58. ^ "Samsung at foundry event talks about 3nm, MBCFET developments". techxplore.com.
  59. ^ "Scaling Down: Intel Boasts RibbonFET and PowerVia as Next IC Design Solution - News". www.allaboutcircuits.com. Retrieved 2025-08-06.
  60. ^ Cutress, Dr Ian. "Intel to use Nanowire/Nanoribbon Transistors in Volume 'in Five Years'". www.anandtech.com.
  61. ^ "Samsung's 3-nm Tech Shows Nanosheet Transistor Advantage - IEEE Spectrum".
  62. ^ "Nanosheets: IBM's Path to 5-Nanometer Transistors - IEEE Spectrum".
  63. ^ Subramanian V (2010). "Multiple gate field-effect transistors for future CMOS technologies". IETE Technical Review. 27 (6): 446–454. doi:10.4103/0256-4602.72582 (inactive 12 July 2025). Archived from the original on March 23, 2012.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  64. ^ Subramanian (5 Dec 2005). "Device and circuit-level analog performance trade-offs: A comparative study of planar bulk FETs versus FinFETs". IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. pp. 898–901. doi:10.1109/IEDM.2005.1609503. ISBN 0-7803-9268-X. S2CID 32683938.
  65. ^ "BSIMCMG Model". UC Berkeley. Archived from the original on 2025-08-06.
[edit]
四离日是什么意思 精液是什么组成的 猫驱虫药什么牌子好 7月1日是什么节 锦衣玉食什么意思
老实人为什么总被欺负 糖稀是什么 肠粉是什么 人绒毛膜促性腺激素是什么 喉炎吃什么药好得快
梦见挖野菜是什么意思 2月24日什么星座 支原体感染是什么症状 溃疡性结肠炎吃什么药 风湿是什么原因引起的
爽字代表什么生肖 点痣用什么方法最好 覆水难收是什么意思 贫血吃什么可以补血 摄人心魄是什么意思
腿抽筋是什么原因hcv9jop2ns5r.cn 维生素e吃多了有什么副作用hcv8jop7ns3r.cn 萤火虫为什么会发光hcv8jop3ns7r.cn 大便深褐色是什么原因hcv9jop4ns2r.cn 总胆固醇高吃什么药好fenrenren.com
门特是什么jasonfriends.com 平菇炒什么好吃hcv9jop3ns5r.cn 过敏性咽炎吃什么药hcv9jop4ns3r.cn 甲醛是什么气味hcv9jop6ns8r.cn 爱新觉罗改成什么姓了hcv8jop3ns7r.cn
猝死是什么原因造成的hcv9jop4ns5r.cn 什么是热伤风hcv9jop6ns9r.cn 狗狗产后吃什么下奶多hcv8jop7ns4r.cn 可见一什么hcv7jop7ns0r.cn 月经后一周又出血是什么原因ff14chat.com
经常拉肚子是什么原因引起的hcv7jop9ns5r.cn 丁香泡水喝有什么功效和作用hcv9jop4ns0r.cn 子宫肌瘤什么不能吃hcv7jop5ns2r.cn 吃什么去肝火hcv7jop6ns3r.cn vb是什么hkuteam.com
百度