拔凉拔凉是什么意思| bbq是什么| 蓝海是什么意思| 铁剂不能与什么同服| 皮肤瘙痒症用什么药| 国家安全法属于什么法| 灰指甲有什么危害| 英语介词是什么意思| 什么是纤维| 上大厕拉出血是什么原因| 爷爷的妹妹叫什么| 鱼用什么游泳| 保温杯什么牌子好| 五心烦热失眠手脚心发热吃什么药| 晚上手脚发热是什么原因| 子母环是什么形状图片| 烧心吃什么马上能缓解| 再说吧是什么意思| 满月针最晚什么时候打| 闺蜜是什么意思| 花裙子配什么上衣好看| 胃火旺喝什么茶| 为什么阴道会排气| 风起云涌是什么生肖| delvaux是什么牌子| 小产可以吃什么水果| 成人礼送什么礼物| 脑委缩有什么症状| 凭什么是什么意思| 金火是什么生肖| 石英表是什么意思| 人为什么会长智齿| 开心果为什么叫开心果| 八月二十六是什么星座| 狗狗胰腺炎有什么症状| 怎么吃都不胖是什么原因| 胆结石吃什么比较好| 吃了阿莫西林不能吃什么| 山花对什么| 心得安又叫什么名| 杠是什么意思| 分水岭是什么意思| 西罗手表什么档次| 女性更年期在什么年龄段| mgd是什么意思| 长脸适合什么刘海| 为什么会头痛| l5s1椎间盘突出是什么意思| marisfrolg是什么牌子| 梦见放烟花是什么征兆| 黄精和什么泡水喝最好| 维生素c阴性什么意思| 夜不能寐什么意思| 咳嗽有白痰吃什么药最好| 兔死什么悲| 吃什么促进恶露排干净| 喉咙溃疡吃什么药| 头发斑秃是什么原因引起的| 麦冬是什么植物| 鬼压床是什么| 紫癜是什么病| 美的e3是什么故障| 警察为什么叫蜀黍| 什么是重水| 吃什么补脑| 梦到吵架是什么意思| 梦见自己输液是什么意思| 肺大泡用什么药| 片仔癀是什么| 新生儿溶血是什么意思| 隐翅虫是什么| 荔枝可以做什么菜| 员额制是什么意思| 十月底是什么星座| 谷氨酰胺是什么| 女人漏尿是什么原因| 2010年什么年| 口干口臭是什么原因引起的| 脂肪疝是什么病| 细胞核由什么组成| 什么食物含碘| 嘴苦吃什么药| 肚子胀气放屁吃什么药| 肝素帽是什么| 心肌炎是什么症状| 健胃消食片什么时候吃| vod是什么意思| 包皮炎看什么科| 梦见自己掉牙齿是什么征兆| 小便发黄是什么症状| 现在适合做什么生意| 吃白饭是什么意思| 满江红是什么植物| 功课是什么意思| 什么品种的榴莲最好吃| 阴虚火旺什么意思| 狐臭去医院挂什么科| 墨蓝色是什么颜色| 三点水的字大多与什么有关| 什么是网球肘| 脂肪肝不能吃什么| 转化是什么意思| 梦见老宅是什么意思| 肾火旺吃什么药| 角加斗念什么| 择日是什么意思| 梦见苍蝇是什么预兆| 看见喜鹊有什么预兆| 舅舅的孩子叫什么| 神经性皮炎用什么药膏| 矬子是什么意思| 起死回生是什么生肖| 腰肌劳损是什么原因造成的| 脑部磁共振检查什么| 互为表里是什么意思| 肚脐下方是什么器官| 属马的男生和什么属相最配| 四九城是什么意思| 吃秋葵有什么禁忌| 什么叫台风| 透明的什么填词语| 什么植物和动物像鸡| 切诺是什么药| 粘胶是什么材质| castle什么意思| 水烟是什么| 丢包是什么意思| 4月29号0点是什么时候| 什么的垂下| d表示什么| 水痘长什么样子| 7月初七是什么日子| 可见一什么| 梦见买帽子是什么意思| 什么一清二白| 中性粒细胞数目偏高是什么意思| 宇宙的中心是什么| 悲戚是什么意思| 心肌酶是查什么的| 拍花子是什么意思| 买什么化妆品好| 父母坟上长树意味什么| 跳蚤是什么| 感悟是什么意思| 整天犯困没精神想睡觉是什么原因| 什么的孙悟空| 角膜塑形镜什么牌子好| 猝死什么意思| 推是什么意思| 胶水用什么能洗掉| 鱼缸什么材质的好| 闰六月是什么意思| 潜质是什么意思| 什么枯石烂| 拉肚子为什么会发烧| 八朵玫瑰花代表什么意思| 9月3号什么日子| 盆腔炎是什么原因引起的| 圣母娘娘是什么神| 红色加紫色是什么颜色| 杨公忌日是什么意思| 星期狗什么意思| 树叶又什么又什么| 汉防己甲素片治什么病| 左侧卵巢囊肿是什么原因引起的| 月令是什么意思| 血压偏低有什么症状| 大难不死的生肖是什么| levi是什么意思| 种草莓是什么意思| 者加羽念什么| 喉炎吃什么药最有效| 520是什么意思表白| 掉筷子有什么预兆| 随笔是什么意思| 腿脚浮肿是什么原因引起的| 猫头鹰属于什么科| 狼的天敌是什么动物| 12月27日是什么星座| 月子能吃什么水果| 家里为什么有隐翅虫| 鲁字五行属什么| 总感觉自己有病是什么心理病| 鲁迅原名什么| galaxy是什么牌子| 老师结婚学生送什么礼物好| 奶奶的姐姐叫什么| 孩子多动缺什么| 鼻翼长痘是什么原因| 当医生要什么学历| 作业是什么意思| 什么叫四大皆空| essence什么意思| 乙肝25阳性什么意思| 拉肚子拉稀水吃什么药管用| 右边锁骨疼是什么原因| 体内湿气重是什么原因造成的| 无极调光是什么意思| 什么是钝角| 胆囊肌腺症是什么病| 气血两虚吃什么药| 鹤是什么生肖| 非转基因是什么意思| 什么时候放开二胎政策| 乳岩是什么病| 肋骨中间是什么器官| 1927年中国发生了什么| 肿瘤吃什么中药能消除| 端午节什么时候吃粽子| 今天什么生肖冲什么生肖| 肺结核的痰是什么颜色| 四不念什么| 组cp是什么意思| 中国劲酒有什么功效| 9.28什么星座| 曹休和曹操什么关系| 浑浑噩噩是什么意思| 南五行属什么| 肠炎能吃什么水果| syphilis是什么意思| 做梦梦见拉屎是什么意思| 督导是什么| 为什么会得甲减| 总胆固醇高吃什么药| 鼻甲肥大吃什么药最好| 拜土地公时要念什么好| 为什么叫关东军| 微生物是什么| 缺磷吃什么食物好| 农历3月14日是什么星座| 体检吃早餐有什么影响| 静脉曲张吃什么药| 夫妇是什么意思| 三门代表什么生肖| 肾上腺彩超是检查什么| 运动后出汗多是什么原因| 肚子胀气吃什么药| 陶弘景有什么之称| 新生儿嘴唇发紫是什么原因| dh什么意思| 高是什么意思| 盆腔少量积液是什么问题| 气管炎用什么药| 拉屎酸臭是什么原因| 母亲节送母亲什么礼物| 水代表什么| 中央民族大学什么档次| 就义是什么意思| 什么是甲减有什么症状| 三七粉是治什么病的| 尿多尿急是什么原因| 鹅蛋吃了有什么好处| 珵字五行属什么| 眩晕症是什么病| 机灵的动物是什么生肖| 阮小五的绰号是什么| 螺蛳吃什么| 我好想你是什么歌| 绿茶什么时候喝最好| 梦见葡萄是什么意思| miniso是什么意思| 得不偿失是什么意思| 胃气上逆吃什么中成药| 猪笼入水是什么意思| 百度Jump to content

咳嗽雾化用什么药

From Wikipedia, the free encyclopedia
百度 统一制作党员积分榜,每季度进行公示。

Richard Dedekind
Born(2025-08-14)6 October 1831
Died12 February 1916(2025-08-14) (aged 84)
NationalityGerman
Alma materCollegium Carolinum
University of G?ttingen
Known forDedekind cut
Dedekind-Peano axioms
Dedekind's theorem
Abstract algebra
Algebraic number theory
Real numbers
Logicism
Scientific career
FieldsMathematics
Philosophy of mathematics
Doctoral advisorCarl Friedrich Gauss

Julius Wilhelm Richard Dedekind (/?de?d?k?nd/;[1] German: [?de?d??k?nt]; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as logicism.

Life

[edit]

Dedekind's father was Julius Levin Ulrich Dedekind, an administrator of Collegium Carolinum in Braunschweig. His mother was Caroline Henriette Dedekind (née Emperius), the daughter of a professor at the Collegium.[2] Richard Dedekind had three older siblings. As an adult, he never used the names Julius Wilhelm. He was born in Braunschweig (often called "Brunswick" in English), which is where he lived most of his life and died. His body rests at Braunschweig Main Cemetery.

He first attended the Collegium Carolinum in 1848 before transferring to the University of G?ttingen in 1850. There, Dedekind was taught number theory by professor Moritz Stern. Gauss was still teaching, although mostly at an elementary level, and Dedekind became his last student. Dedekind received his doctorate in 1852, for a thesis titled über die Theorie der Eulerschen Integrale ("On the Theory of Eulerian integrals"). This thesis did not display the talent evident in Dedekind's subsequent publications.

At that time, the University of Berlin, not G?ttingen, was the main facility for mathematical research in Germany. Thus Dedekind went to Berlin for two years of study, where he and Bernhard Riemann were contemporaries; they were both awarded the habilitation in 1854. Dedekind returned to G?ttingen to teach as a Privatdozent, giving courses on probability and geometry. He studied for a while with Peter Gustav Lejeune Dirichlet, and they became good friends. Because of lingering weaknesses in his mathematical knowledge, he studied elliptic and abelian functions. Yet he was also the first at G?ttingen to lecture concerning Galois theory. About this time, he became one of the first people to understand the importance of the notion of groups for algebra and arithmetic.

In 1858, he began teaching at the Polytechnic school in Zürich (now ETH Zürich). When the Collegium Carolinum was upgraded to a Technische Hochschule (Institute of Technology) in 1862, Dedekind returned to his native Braunschweig, where he spent the rest of his life, teaching at the Institute. He retired in 1894, but did occasional teaching and continued to publish. He never married, instead living with his sister Julia.

Dedekind was elected to the Academies of Berlin (1880) and Rome, and to the French Academy of Sciences (1900). He received honorary doctorates from the universities of Oslo, Zurich, and Braunschweig.

Work

[edit]
Dedekind, before 1886

While teaching calculus for the first time at the Polytechnic school, Dedekind developed the notion now known as a Dedekind cut (German: Schnitt), now a standard definition of the real numbers. The idea of a cut is that an irrational number divides the rational numbers into two classes (sets), with all the numbers of one class (greater) being strictly greater than all the numbers of the other (lesser) class. For example, the square root of 2 defines all the nonnegative numbers whose squares are less than 2 and the negative numbers into the lesser class, and the positive numbers whose squares are greater than 2 into the greater class. Every location on the number line continuum contains either a rational or an irrational number. Thus there are no empty locations, gaps, or discontinuities. Dedekind published his thoughts on irrational numbers and Dedekind cuts in his pamphlet "Stetigkeit und irrationale Zahlen" ("Continuity and irrational numbers");[3] in modern terminology, Vollst?ndigkeit, completeness.

Dedekind defined two sets to be "similar" when there exists a one-to-one correspondence between them.[4] He invoked similarity to give the first[5] precise definition of an infinite set: a set is infinite when it is "similar to a proper part of itself,"[6] in modern terminology, is equinumerous to one of its proper subsets. Thus the set N of natural numbers can be shown to be similar to the subset of N whose members are the squares of every member of N, (N N2):

N    1  2  3  4  5  6  7  8  9  10 ...
                      
N2   1  4  9  16 25 36 49 64 81 100 ...

Dedekind's work in this area anticipated that of Georg Cantor, who is commonly considered the founder of set theory. Likewise, his contributions to the foundations of mathematics anticipated later works by major proponents of logicism, such as Gottlob Frege and Bertrand Russell.

Dedekind edited the collected works of Lejeune Dirichlet, Gauss, and Riemann. Dedekind's study of Lejeune Dirichlet's work led him to his later study of algebraic number fields and ideals. In 1863, he published Lejeune Dirichlet's lectures on number theory as Vorlesungen über Zahlentheorie ("Lectures on Number Theory") about which it has been written that:

Although the book is assuredly based on Dirichlet's lectures, and although Dedekind himself referred to the book throughout his life as Dirichlet's, the book itself was entirely written by Dedekind, for the most part after Dirichlet's death.

— Edwards, 1983

The 1879 and 1894 editions of the Vorlesungen included supplements introducing the notion of an ideal, fundamental to ring theory. (The word "Ring", introduced later by Hilbert, does not appear in Dedekind's work.) Dedekind defined an ideal as a subset of a set of numbers, composed of algebraic integers that satisfy polynomial equations with integer coefficients. The concept underwent further development in the hands of Hilbert and, especially, of Emmy Noether. Ideals generalize Ernst Eduard Kummer's ideal numbers, devised as part of Kummer's 1843 attempt to prove Fermat's Last Theorem. (Thus Dedekind can be said to have been Kummer's most important disciple.) In an 1882 article, Dedekind and Heinrich Martin Weber applied ideals to Riemann surfaces, giving an algebraic proof of the Riemann–Roch theorem.

In 1888, he published a short monograph titled Was sind und was sollen die Zahlen? ("What are numbers and what are they good for?" Ewald 1996: 790),[7] which included his definition of an infinite set. He also proposed an axiomatic foundation for the natural numbers, whose primitive notions were the number one and the successor function. The next year, Giuseppe Peano, citing Dedekind, formulated an equivalent but simpler set of axioms, now the standard ones.

Dedekind made other contributions to algebra. For instance, around 1900, he wrote the first papers on modular lattices. In 1872, while on holiday in Interlaken, Dedekind met Georg Cantor. Thus began an enduring relationship of mutual respect, and Dedekind became one of the first mathematicians to admire Cantor's work concerning infinite sets, proving a valued ally in Cantor's disputes with Leopold Kronecker, who was philosophically opposed to Cantor's transfinite numbers.[8]


Bibliography

[edit]

Primary literature in English:

  • 1890. "Letter to Keferstein" in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press: 98–103.
  • 1963 (1901). Essays on the Theory of Numbers. Beman, W. W., ed. and trans. Dover. Contains English translations of Stetigkeit und irrationale Zahlen and Was sind und was sollen die Zahlen?
  • 1996. Theory of Algebraic Integers. Stillwell, John, ed. and trans. Cambridge Uni. Press. A translation of über die Theorie der ganzen algebraischen Zahlen.
  • Ewald, William B., ed., 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 vols. Oxford Uni. Press.
    • 1854. "On the introduction of new functions in mathematics," 754–61.
    • 1872. "Continuity and irrational numbers," 765–78. (translation of Stetigkeit...)
    • 1888. What are numbers and what should they be?, 787–832. (translation of Was sind und...)
    • 1872–82, 1899. Correspondence with Cantor, 843–77, 930–40.

Primary literature in German:

See also

[edit]

Notes

[edit]
  1. ^ "Dedekind". Random House Webster's Unabridged Dictionary.
  2. ^ James, Ioan (2002). Remarkable Mathematicians. Cambridge University Press. p. 196. ISBN 978-0-521-52094-2.
  3. ^ Ewald, William B., ed. (1996) "Continuity and irrational numbers", p. 766 in From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 vols. Oxford University Press. full text
  4. ^ "The Nature and Meaning of Numbers". Essays on the Theory of Numbers. Dover. 1963 [1901]. Part III, Paragraph 32 – via Google Books –. 1901 edition, published by Open Court Publishing Company, translated by Wooster Woodruff Beman.
  5. ^ Moore, G.H. (17 November 1982). Zermelo's Axiom of Choice. New York: Springer. ISBN 978-0-387-90670-6.
  6. ^ "The Nature and Meaning of Numbers". Essays on the Theory of Numbers. Dover. 1963 [1901]. Part V, Paragraph 64 – via Google Books –. 1901 edition, published by Open Court Publishing Company, translated by Wooster Woodruff Beman.
  7. ^ Richard Dedekind (1888). Was sind und was sollen die Zahlen?. Braunschweig: Vieweg. Online available at: MPIWG GDZ UBS
  8. ^ Aczel, Amir D. (2001), The Mystery of the Aleph: Mathematics, the Kabbalah, and the Search for Infinity, Pocket Books nonfiction, Simon and Schuster, p. 102, ISBN 9780743422994.
  9. ^ Bell, E. T. (1933). "Book Review: Richard Dedekind. Gesammelte mathematische Werke". Bulletin of the American Mathematical Society. 39: 16–17. doi:10.1090/S0002-9904-1933-05535-0.

References

[edit]

Further reading

[edit]

There is an online bibliography of the secondary literature on Dedekind. Also consult Stillwell's "Introduction" to Dedekind (1996).

[edit]
历史是个什么玩意儿 银芽是什么菜 女娲是一个什么样的人 一什么春笋 晚上9点到10点是什么时辰
大舅哥是什么意思 黄豆炒什么好吃 ooc是什么意思 对牛弹琴告诉我们什么道理 俊五行属性是什么
脑梗死吃什么药 什么什么挺立 男人吃荔枝有什么好处 非赘生性囊肿什么意思 双侧腋窝淋巴结可见什么意思
得过且过是什么意思 腰椎间盘突出吃什么好 肉卷炒什么菜好吃 腹主动脉壁钙化是什么意思 周围神经炎是什么症状
叶芽是什么hcv9jop0ns4r.cn 决定的近义词是什么ff14chat.com 什么程度才需要做胃镜adwl56.com 时点是什么意思wzqsfys.com 仓鼠为什么喜欢跑轮zhiyanzhang.com
vd是什么意思hcv7jop5ns1r.cn 03年属什么生肖hcv7jop9ns0r.cn 秋天什么时候hcv8jop9ns8r.cn 口比念什么hcv8jop7ns9r.cn 手掌心发红是什么原因hcv9jop2ns9r.cn
霉菌性阴道炎用什么药好hcv8jop9ns0r.cn 酒精和碘伏有什么区别hcv8jop5ns1r.cn 花椒是什么bjhyzcsm.com 什么药降肌酐最快最好hcv8jop9ns2r.cn 什么人容易得血栓hcv9jop2ns0r.cn
蚂蚱喜欢吃什么hcv7jop9ns0r.cn 宁夏古代叫什么hcv9jop4ns9r.cn 口加女念什么hcv8jop3ns7r.cn 我想成为一个什么样的人hcv8jop0ns6r.cn 火龙果有什么营养hlguo.com
百度