为什么会得甲减| 男生留什么发型好看| 阴道真菌感染用什么药| 产检挂什么科| 结婚下大雨是什么兆头| 大饼脸适合什么发型| 青少年长白头发是什么原因| m2是什么单位| dic是什么| oz是什么单位| 咖啡色五行属什么| 不正常的人有什么表现| 什么叫suv车| 怀孕的脉象是什么样的| 血凝是什么意思| 头皮发白是什么原因| 穷奢极欲什么意思| 为什么来完月经下面痒| 诸事顺遂是什么意思| 拔罐后发痒是什么原因| 情窦初开是什么意思| 屁眼痒是什么原因| 圆寂是什么意思| 必承其重上一句是什么| 农历6月21日是什么星座| 辣椒红是什么| 蚂蚁代表什么生肖| 易烊千玺原名叫什么| cd8高是什么原因| 草字头加西念什么| 母亲节送给妈妈什么礼物好| 烊什么意思| 四川九寨沟什么时候去最好| 米黄是什么颜色| br是什么意思| 阴茎皮开裂是什么原因| 生物包括什么| 奇异果和猕猴桃有什么区别| 嘴唇发白什么原因| 摩卡是什么意思| 脑供血不足头晕吃什么药| 棍子鱼又叫什么鱼| 半夜醒来睡不着是什么原因| 毛主席为什么不进故宫| 抬举是什么意思| fox什么意思| 痛风喝酒会有什么后果| 冠字五行属什么| 养成系是什么意思| 眼球突出是什么原因| 生眼屎是什么原因引起的| 糖类抗原CA125高是什么意思| 庆字五行属什么| 3岁小孩说话结巴是什么原因| 呼吸道感染吃什么药| 性交是什么感觉| 冬枣什么时候成熟| 恩泽是什么意思| 高汤是什么汤| 红烧肉可以放什么配菜| 什么人容易得肺结核| 白色加红色等于什么颜色| 水火既济是什么意思| 老是打嗝是什么病的征兆| 梦见吃杨梅是什么意思| 亟是什么意思| 地什么人什么| 为什么不一样| 弓加耳念什么| 属牛男最在乎女人什么| 梦见扫地是什么预兆| 2008是什么年| 10月14日什么星座| 李子什么时候成熟| 子午流注是什么意思| 李白长什么样| 精神衰弱吃什么能改善| 升字是什么生肖| 厉兵秣马什么意思| 后背疼是什么病的前兆| 哀鸿遍野是什么意思| 李子什么季节成熟| 荷叶茶有什么作用| 漂亮的什么| 左肺钙化灶是什么意思| 便秘屁多是什么原因| 肺癌有什么症状| 汤去掉三点水念什么| 青蛙趴有什么好处| 顺手牵羊是什么生肖| 武林外传的客栈叫什么| 两三分钟就射什么原因| 重心是什么| 就是什么意思| 花胶是什么东西| 呛是什么意思| 上午12点是什么时候| 火药是什么时候发明的| 左胸隐痛什么原因| 心律不齐用什么药| 参片泡水喝有什么功效| 右乳导管扩张什么意思| 双瞳电影到底讲了什么| 幸福是什么的经典语录| 场面是什么意思| 昙花一现是什么意思| a1代表什么意思| 为什么被蚊子咬了会起包| 副镇长是什么级别| 增加白细胞吃什么食物最好| 切诺为什么要饭前半小时吃| 冠脉硬化什么意思| 腋毛癣用什么药膏最好| 特发性震颤是什么病| 什么时候立夏| 夏天可以种什么花| 控制线是什么意思| 蝙蝠长什么样子图片| 北京摇号什么时候开始的| 1905年属什么生肖| rash什么意思| 女性寒性体质喝什么茶| 和田玉五行属什么| 青云志是什么意思| 五月是什么月| 甲亢多吃什么食物比较好| 痰盂是什么意思| 白带有血丝是什么情况| 小孩流鼻涕吃什么药| 淋巴结增大是什么原因严重吗| 黄辣丁吃什么| 2月7日什么星座| 秋天有什么植物| 奇经八脉指的是什么| 多吃海带有什么好处和坏处| 博士点是什么意思| 胰腺钙化灶是什么意思| 阳历2月份是什么星座| 包皮溃烂是什么原因| 什么克火| b12有什么作用| 血象高会导致什么后果| 旅游的意义是什么| 台湾以前叫什么名字| 什么方法可以快速入睡| 中筋面粉是什么粉| 运交华盖是什么意思| 什么烧肉好吃| 有何贵干是什么意思| 上火耳鸣吃什么药最好| 吃什么胎儿眼睛黑又亮| 什么是签注| 诸葛亮是个什么样的人| 女人喝什么茶叶好| 美女是指什么生肖| 微信被拉黑后显示什么| 十年粤语版叫什么名字| 脚抽筋是什么原因| ivory是什么意思| 凤五行属性是什么| 经常口腔溃疡是什么原因| 吃什么可以淡化黄褐斑| raf是什么意思| 两肺纹理增多是什么意思| 无以回报是什么意思| 吃石斛有什么功效| 风声鹤唳的意思是什么| 越南古代叫什么| 水瓶座什么象| 盲目是什么意思| 乌鸡汤放什么材料| 霉菌性炎症用什么药效果最好| 牙疼买什么药| 211985是什么意思| 婴儿奶粉过敏有什么症状| 什么水果最好吃| 结肠是什么病| 中药不能和什么一起吃| 胆汁为什么会反流到胃里面| 菠菜什么时候种最合适| 肩膀酸胀是什么原因| 常喝黑苦荞茶有什么好处| 喜欢出汗是什么原因| 我不知道你在说什么英文| 驹是什么意思| 肾上腺是什么意思| 容易犯困是什么原因| 单抗是什么药| 突然嗜睡是什么原因造成的| birads3类是什么意思| 靴靴是什么意思| 吊瓜是什么瓜| 血浓稠是什么原因引起的| 为什么会得多囊卵巢| 经期吃榴莲有什么好处和坏处| 眼睛很多眼屎是什么原因| 萘普生是什么药| 10万个为什么| 总钙偏高是什么原因| 仪仗队是什么意思| 老人肚子胀是什么原因| 虚不受补是什么意思| lgbtq是什么意思| 上不下大是什么字| 左眼跳女人是什么预兆| 扶苏是什么意思| 感冒头疼吃什么药| 大殓是什么意思| 手脱皮是缺什么| 5月31日什么星座| 牙龈上火肿痛吃什么药| 晚上为什么睡不着| 9.21是什么星座| 婴儿为什么老吐奶| 芝五行属什么| 吃什么东西补血| 什么宠物好养又干净| 做肠镜前喝的是什么药| 美国为什么不敢动朝鲜| gi是什么意思| 为什么脚会肿| 吃什么补气补血最见效| 血糖高吃什么食物最好最佳| 肺炎支原体阳性是什么意思| 荷叶茶有什么功效和作用| 钱丢了预示着什么| 性格内向的人适合做什么工作| 离子检测是检查什么| 皮肤长痘痘是什么原因| 大爱什么意思| hpa是什么单位| 什么颜色属木| 鹅蛋有什么功效| 夏天吃什么好| 五味子不适合什么人喝| 翠鸟吃什么| 显怀是什么意思| 过敏性紫癜吃什么药| 斯里兰卡说什么语言| 专柜是什么意思| 老年人全身无力是什么原因| 清纯是什么意思| gd是什么元素| 一个三点水一个令念什么| 老鼠为什么怕猫| 绿茶什么意思| 代言人是什么意思| 瓶颈期什么意思| 办理暂住证需要什么材料| 结膜充血用什么眼药水| 什么是犯罪| 游泳为什么要穿泳衣| 公历是什么| 为什么不能空腹喝牛奶| modern是什么牌子| 珙桐是什么植物| 牡丹花什么时候开花| ca什么意思| 存脐带血有什么用| 2005年是什么生肖| 经常流鼻血是什么病| 均为是什么意思| 禅师是什么意思| 重庆房价为什么这么低| 百度Jump to content

首批中央财政支持的居家和社区养老服务改革试点启动

From Wikipedia, the free encyclopedia
Illustration of word embedding. Each word is a point in some space. The word embedding enables to perform semantic operator like obtaining the capital of a given country.
百度 绿驰汽车团队是由国内主导,整合了800多名全球顶尖汽车人的精英队伍。

In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning.[1] Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.

Methods to generate this mapping include neural networks,[2] dimensionality reduction on the word co-occurrence matrix,[3][4][5] probabilistic models,[6] explainable knowledge base method,[7] and explicit representation in terms of the context in which words appear.[8]

Word and phrase embeddings, when used as the underlying input representation, have been shown to boost the performance in NLP tasks such as syntactic parsing[9] and sentiment analysis.[10]

Development and history of the approach

[edit]

In distributional semantics, a quantitative methodological approach for understanding meaning in observed language, word embeddings or semantic feature space models have been used as a knowledge representation for some time.[11] Such models aim to quantify and categorize semantic similarities between linguistic items based on their distributional properties in large samples of language data. The underlying idea that "a word is characterized by the company it keeps" was proposed in a 1957 article by John Rupert Firth,[12] but also has roots in the contemporaneous work on search systems[13] and in cognitive psychology.[14]

The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space models is the vector space model for information retrieval.[15][16][17] Such vector space models for words and their distributional data implemented in their simplest form results in a very sparse vector space of high dimensionality (cf. curse of dimensionality). Reducing the number of dimensions using linear algebraic methods such as singular value decomposition then led to the introduction of latent semantic analysis in the late 1980s and the random indexing approach for collecting word co-occurrence contexts.[18][19][20][21] In 2000, Bengio et al. provided in a series of papers titled "Neural probabilistic language models" to reduce the high dimensionality of word representations in contexts by "learning a distributed representation for words".[22][23][24]

A study published in NeurIPS (NIPS) 2002 introduced the use of both word and document embeddings applying the method of kernel CCA to bilingual (and multi-lingual) corpora, also providing an early example of self-supervised learning of word embeddings.[25]

Word embeddings come in two different styles, one in which words are expressed as vectors of co-occurring words, and another in which words are expressed as vectors of linguistic contexts in which the words occur; these different styles are studied in Lavelli et al., 2004.[26] Roweis and Saul published in Science how to use "locally linear embedding" (LLE) to discover representations of high dimensional data structures.[27] Most new word embedding techniques after about 2005 rely on a neural network architecture instead of more probabilistic and algebraic models, after foundational work done by Yoshua Bengio[28][circular reference] and colleagues.[29][30]

The approach has been adopted by many research groups after theoretical advances in 2010 had been made on the quality of vectors and the training speed of the model, as well as after hardware advances allowed for a broader parameter space to be explored profitably. In 2013, a team at Google led by Tomas Mikolov created word2vec, a word embedding toolkit that can train vector space models faster than previous approaches. The word2vec approach has been widely used in experimentation and was instrumental in raising interest for word embeddings as a technology, moving the research strand out of specialised research into broader experimentation and eventually paving the way for practical application.[31]

Polysemy and homonymy

[edit]

Historically, one of the main limitations of static word embeddings or word vector space models is that words with multiple meanings are conflated into a single representation (a single vector in the semantic space). In other words, polysemy and homonymy are not handled properly. For example, in the sentence "The club I tried yesterday was great!", it is not clear if the term club is related to the word sense of a club sandwich, clubhouse, golf club, or any other sense that club might have. The necessity to accommodate multiple meanings per word in different vectors (multi-sense embeddings) is the motivation for several contributions in NLP to split single-sense embeddings into multi-sense ones.[32][33]

Most approaches that produce multi-sense embeddings can be divided into two main categories for their word sense representation, i.e., unsupervised and knowledge-based.[34] Based on word2vec skip-gram, Multi-Sense Skip-Gram (MSSG)[35] performs word-sense discrimination and embedding simultaneously, improving its training time, while assuming a specific number of senses for each word. In the Non-Parametric Multi-Sense Skip-Gram (NP-MSSG) this number can vary depending on each word. Combining the prior knowledge of lexical databases (e.g., WordNet, ConceptNet, BabelNet), word embeddings and word sense disambiguation, Most Suitable Sense Annotation (MSSA)[36] labels word-senses through an unsupervised and knowledge-based approach, considering a word's context in a pre-defined sliding window. Once the words are disambiguated, they can be used in a standard word embeddings technique, so multi-sense embeddings are produced. MSSA architecture allows the disambiguation and annotation process to be performed recurrently in a self-improving manner.[37]

The use of multi-sense embeddings is known to improve performance in several NLP tasks, such as part-of-speech tagging, semantic relation identification, semantic relatedness, named entity recognition and sentiment analysis.[38][39]

As of the late 2010s, contextually-meaningful embeddings such as ELMo and BERT have been developed.[40] Unlike static word embeddings, these embeddings are at the token-level, in that each occurrence of a word has its own embedding. These embeddings better reflect the multi-sense nature of words, because occurrences of a word in similar contexts are situated in similar regions of BERT’s embedding space.[41][42]

For biological sequences: BioVectors

[edit]

Word embeddings for n-grams in biological sequences (e.g. DNA, RNA, and Proteins) for bioinformatics applications have been proposed by Asgari and Mofrad.[43] Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. The results presented by Asgari and Mofrad[43] suggest that BioVectors can characterize biological sequences in terms of biochemical and biophysical interpretations of the underlying patterns.

Game design

[edit]

Word embeddings with applications in game design have been proposed by Rabii and Cook[44] as a way to discover emergent gameplay using logs of gameplay data. The process requires transcribing actions that occur during a game within a formal language and then using the resulting text to create word embeddings. The results presented by Rabii and Cook[44] suggest that the resulting vectors can capture expert knowledge about games like chess that are not explicitly stated in the game's rules.

Sentence embeddings

[edit]

The idea has been extended to embeddings of entire sentences or even documents, e.g. in the form of the thought vectors concept. In 2015, some researchers suggested "skip-thought vectors" as a means to improve the quality of machine translation.[45] A more recent and popular approach for representing sentences is Sentence-BERT, or SentenceTransformers, which modifies pre-trained BERT with the use of siamese and triplet network structures.[46]

Software

[edit]

Software for training and using word embeddings includes Tomá? Mikolov's Word2vec, Stanford University's GloVe,[47] GN-GloVe,[48] Flair embeddings,[38] AllenNLP's ELMo,[49] BERT,[50] fastText, Gensim,[51] Indra,[52] and Deeplearning4j. Principal Component Analysis (PCA) and T-Distributed Stochastic Neighbour Embedding (t-SNE) are both used to reduce the dimensionality of word vector spaces and visualize word embeddings and clusters.[53]

Examples of application

[edit]

For instance, the fastText is also used to calculate word embeddings for text corpora in Sketch Engine that are available online.[54]

Ethical implications

[edit]

Word embeddings may contain the biases and stereotypes contained in the trained dataset, as Bolukbasi et al. points out in the 2016 paper “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings” that a publicly available (and popular) word2vec embedding trained on Google News texts (a commonly used data corpus), which consists of text written by professional journalists, still shows disproportionate word associations reflecting gender and racial biases when extracting word analogies.[55] For example, one of the analogies generated using the aforementioned word embedding is “man is to computer programmer as woman is to homemaker”.[56][57]

Research done by Jieyu Zhou et al. shows that the applications of these trained word embeddings without careful oversight likely perpetuates existing bias in society, which is introduced through unaltered training data. Furthermore, word embeddings can even amplify these biases .[58][59]

See also

[edit]

References

[edit]
  1. ^ Jurafsky, Daniel; H. James, Martin (2000). Speech and language processing : an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0-13-095069-7.
  2. ^ Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). "Distributed Representations of Words and Phrases and their Compositionality". arXiv:1310.4546 [cs.CL].
  3. ^ Lebret, Rémi; Collobert, Ronan (2013). "Word Emdeddings through Hellinger PCA". Conference of the European Chapter of the Association for Computational Linguistics (EACL). Vol. 2014. arXiv:1312.5542.
  4. ^ Levy, Omer; Goldberg, Yoav (2014). Neural Word Embedding as Implicit Matrix Factorization (PDF). NIPS.
  5. ^ Li, Yitan; Xu, Linli (2015). Word Embedding Revisited: A New Representation Learning and Explicit Matrix Factorization Perspective (PDF). Int'l J. Conf. on Artificial Intelligence (IJCAI).
  6. ^ Globerson, Amir (2007). "Euclidean Embedding of Co-occurrence Data" (PDF). Journal of Machine Learning Research.
  7. ^ Qureshi, M. Atif; Greene, Derek (2025-08-04). "EVE: explainable vector based embedding technique using Wikipedia". Journal of Intelligent Information Systems. 53: 137–165. arXiv:1702.06891. doi:10.1007/s10844-018-0511-x. ISSN 0925-9902. S2CID 10656055.
  8. ^ Levy, Omer; Goldberg, Yoav (2014). Linguistic Regularities in Sparse and Explicit Word Representations (PDF). CoNLL. pp. 171–180.
  9. ^ Socher, Richard; Bauer, John; Manning, Christopher; Ng, Andrew (2013). Parsing with compositional vector grammars (PDF). Proc. ACL Conf. Archived from the original (PDF) on 2025-08-04. Retrieved 2025-08-04.
  10. ^ Socher, Richard; Perelygin, Alex; Wu, Jean; Chuang, Jason; Manning, Chris; Ng, Andrew; Potts, Chris (2013). Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank (PDF). EMNLP.
  11. ^ Sahlgren, Magnus. "A brief history of word embeddings".
  12. ^ Firth, J.R. (1957). "A synopsis of linguistic theory 1930–1955". Studies in Linguistic Analysis: 1–32. Reprinted in F.R. Palmer, ed. (1968). Selected Papers of J.R. Firth 1952–1959. London: Longman.{{cite book}}: CS1 maint: publisher location (link)
  13. ^ Luhn, H.P. (1953). "A New Method of Recording and Searching Information". American Documentation. 4: 14–16. doi:10.1002/asi.5090040104.
  14. ^ Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. (1957). The Measurement of Meaning. University of Illinois Press.
  15. ^ Salton, Gerard (1962). "Some experiments in the generation of word and document associations". Proceedings of the December 4-6, 1962, fall joint computer conference on - AFIPS '62 (Fall). pp. 234–250. doi:10.1145/1461518.1461544. ISBN 9781450378796. S2CID 9937095. {{cite book}}: ISBN / Date incompatibility (help)
  16. ^ Salton, Gerard; Wong, A; Yang, C S (1975). "A Vector Space Model for Automatic Indexing". Communications of the ACM. 18 (11): 613–620. doi:10.1145/361219.361220. hdl:1813/6057. S2CID 6473756.
  17. ^ Dubin, David (2004). "The most influential paper Gerard Salton never wrote". Archived from the original on 18 October 2020. Retrieved 18 October 2020.
  18. ^ Kanerva, Pentti, Kristoferson, Jan and Holst, Anders (2000): Random Indexing of Text Samples for Latent Semantic Analysis, Proceedings of the 22nd Annual Conference of the Cognitive Science Society, p. 1036. Mahwah, New Jersey: Erlbaum, 2000.
  19. ^ Karlgren, Jussi; Sahlgren, Magnus (2001). Uesaka, Yoshinori; Kanerva, Pentti; Asoh, Hideki (eds.). "From words to understanding". Foundations of Real-World Intelligence. CSLI Publications: 294–308.
  20. ^ Sahlgren, Magnus (2005) An Introduction to Random Indexing, Proceedings of the Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005, August 16, Copenhagen, Denmark
  21. ^ Sahlgren, Magnus, Holst, Anders and Pentti Kanerva (2008) Permutations as a Means to Encode Order in Word Space, In Proceedings of the 30th Annual Conference of the Cognitive Science Society: 1300–1305.
  22. ^ Bengio, Yoshua; Réjean, Ducharme; Pascal, Vincent (2000). "A Neural Probabilistic Language Model" (PDF). NeurIPS.
  23. ^ Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian (2003). "A Neural Probabilistic Language Model" (PDF). Journal of Machine Learning Research. 3: 1137–1155.
  24. ^ Bengio, Yoshua; Schwenk, Holger; Senécal, Jean-Sébastien; Morin, Fréderic; Gauvain, Jean-Luc (2006). "A Neural Probabilistic Language Model". Studies in Fuzziness and Soft Computing. Vol. 194. Springer. pp. 137–186. doi:10.1007/3-540-33486-6_6. ISBN 978-3-540-30609-2.
  25. ^ Vinkourov, Alexei; Cristianini, Nello; Shawe-Taylor, John (2002). Inferring a semantic representation of text via cross-language correlation analysis (PDF). Advances in Neural Information Processing Systems. Vol. 15.
  26. ^ Lavelli, Alberto; Sebastiani, Fabrizio; Zanoli, Roberto (2004). Distributional term representations: an experimental comparison. 13th ACM International Conference on Information and Knowledge Management. pp. 615–624. doi:10.1145/1031171.1031284.
  27. ^ Roweis, Sam T.; Saul, Lawrence K. (2000). "Nonlinear Dimensionality Reduction by Locally Linear Embedding". Science. 290 (5500): 2323–6. Bibcode:2000Sci...290.2323R. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150. S2CID 5987139.
  28. ^ he:????? ???'??
  29. ^ Morin, Fredric; Bengio, Yoshua (2005). "Hierarchical probabilistic neural network language model" (PDF). In Cowell, Robert G.; Ghahramani, Zoubin (eds.). Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. Vol. R5. pp. 246–252.
  30. ^ Mnih, Andriy; Hinton, Geoffrey (2009). "A Scalable Hierarchical Distributed Language Model". Advances in Neural Information Processing Systems. 21 (NIPS 2008). Curran Associates, Inc.: 1081–1088.
  31. ^ "word2vec". Google Code Archive. Retrieved 23 July 2021.
  32. ^ Reisinger, Joseph; Mooney, Raymond J. (2010). Multi-Prototype Vector-Space Models of Word Meaning. Vol. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, California: Association for Computational Linguistics. pp. 109–117. ISBN 978-1-932432-65-7. Retrieved October 25, 2019.
  33. ^ Huang, Eric. (2012). Improving word representations via global context and multiple word prototypes. OCLC 857900050.
  34. ^ Camacho-Collados, Jose; Pilehvar, Mohammad Taher (2018). "From Word to Sense Embeddings: A Survey on Vector Representations of Meaning". arXiv:1805.04032 [cs.CL].
  35. ^ Neelakantan, Arvind; Shankar, Jeevan; Passos, Alexandre; McCallum, Andrew (2014). "Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space". Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1059–1069. arXiv:1504.06654. doi:10.3115/v1/d14-1113. S2CID 15251438.
  36. ^ Ruas, Terry; Grosky, William; Aizawa, Akiko (2025-08-04). "Multi-sense embeddings through a word sense disambiguation process". Expert Systems with Applications. 136: 288–303. arXiv:2101.08700. doi:10.1016/j.eswa.2019.06.026. hdl:2027.42/145475. ISSN 0957-4174. S2CID 52225306.
  37. ^ Agre, Gennady; Petrov, Daniel; Keskinova, Simona (2025-08-04). "Word Sense Disambiguation Studio: A Flexible System for WSD Feature Extraction". Information. 10 (3): 97. doi:10.3390/info10030097. ISSN 2078-2489.
  38. ^ a b Akbik, Alan; Blythe, Duncan; Vollgraf, Roland (2018). "Contextual String Embeddings for Sequence Labeling". Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics: 1638–1649.
  39. ^ Li, Jiwei; Jurafsky, Dan (2015). "Do Multi-Sense Embeddings Improve Natural Language Understanding?". Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1722–1732. arXiv:1506.01070. doi:10.18653/v1/d15-1200. S2CID 6222768.
  40. ^ Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (June 2019). "Proceedings of the 2019 Conference of the North". Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics: 4171–4186. doi:10.18653/v1/N19-1423. S2CID 52967399.
  41. ^ Lucy, Li, and David Bamman. "Characterizing English variation across social media communities with BERT." Transactions of the Association for Computational Linguistics 9 (2021): 538-556.
  42. ^ Reif, Emily, Ann Yuan, Martin Wattenberg, Fernanda B. Viegas, Andy Coenen, Adam Pearce, and Been Kim. "Visualizing and measuring the geometry of BERT." Advances in Neural Information Processing Systems 32 (2019).
  43. ^ a b Asgari, Ehsaneddin; Mofrad, Mohammad R.K. (2015). "Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics". PLOS ONE. 10 (11): e0141287. arXiv:1503.05140. Bibcode:2015PLoSO..1041287A. doi:10.1371/journal.pone.0141287. PMC 4640716. PMID 26555596.
  44. ^ a b Rabii, Younès; Cook, Michael (2025-08-04). "Revealing Game Dynamics via Word Embeddings of Gameplay Data". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 17 (1): 187–194. doi:10.1609/aiide.v17i1.18907. ISSN 2334-0924. S2CID 248175634.
  45. ^ Kiros, Ryan; Zhu, Yukun; Salakhutdinov, Ruslan; Zemel, Richard S.; Torralba, Antonio; Urtasun, Raquel; Fidler, Sanja (2015). "skip-thought vectors". arXiv:1506.06726 [cs.CL].
  46. ^ Reimers, Nils, and Iryna Gurevych. "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982-3992. 2019.
  47. ^ "GloVe".
  48. ^ Zhao, Jieyu; et al. (2018) (2018). "Learning Gender-Neutral Word Embeddings". arXiv:1809.01496 [cs.CL].
  49. ^ "Elmo". 16 October 2024.
  50. ^ Pires, Telmo; Schlinger, Eva; Garrette, Dan (2025-08-04). "How multilingual is Multilingual BERT?". arXiv:1906.01502 [cs.CL].
  51. ^ "Gensim".
  52. ^ "Indra". GitHub. 2025-08-04.
  53. ^ Ghassemi, Mohammad; Mark, Roger; Nemati, Shamim (2015). "A visualization of evolving clinical sentiment using vector representations of clinical notes" (PDF). 2015 Computing in Cardiology Conference (CinC). Vol. 2015. pp. 629–632. doi:10.1109/CIC.2015.7410989. ISBN 978-1-5090-0685-4. PMC 5070922. PMID 27774487.
  54. ^ "Embedding Viewer". Embedding Viewer. Lexical Computing. Archived from the original on 8 February 2018. Retrieved 7 Feb 2018.
  55. ^ Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv:1607.06520 [cs.CL].
  56. ^ Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2025-08-04). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv:1607.06520 [cs.CL].
  57. ^ Dieng, Adji B.; Ruiz, Francisco J. R.; Blei, David M. (2020). "Topic Modeling in Embedding Spaces". Transactions of the Association for Computational Linguistics. 8: 439–453. arXiv:1907.04907. doi:10.1162/tacl_a_00325.
  58. ^ Zhao, Jieyu; Wang, Tianlu; Yatskar, Mark; Ordonez, Vicente; Chang, Kai-Wei (2017). "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints". Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 2979–2989. doi:10.18653/v1/D17-1323.
  59. ^ Petreski, Davor; Hashim, Ibrahim C. (2025-08-04). "Word embeddings are biased. But whose bias are they reflecting?". AI & Society. 38 (2): 975–982. doi:10.1007/s00146-022-01443-w. ISSN 1435-5655. S2CID 249112516.
枣子什么季节成熟 心神不定是什么生肖 开山鼻祖是什么意思 肠胀气是什么原因引起的怎么解决 梦见女儿结婚是什么意思
恒源祥属于什么档次 ncu病房是什么意思 为什么说成也萧何败也萧何 芒硝是什么东西 属蛇本命佛是什么佛
胆红素高是什么原因引起的 元宵节的习俗是什么 1972年属什么 肾炎吃什么药 欧阳修字什么号什么
急腹症是什么意思 温居是什么意思 举案齐眉是什么意思 伤官配印是什么意思 由来是什么意思
系统b超主要检查什么hcv9jop6ns2r.cn 腊月是什么星座hcv8jop2ns7r.cn 胚胎生化是什么意思hcv7jop6ns9r.cn 6月30号什么星座hcv8jop4ns8r.cn 搪瓷是什么材料hcv8jop8ns5r.cn
孕妇适合喝什么汤hcv7jop9ns6r.cn 羊和什么属相最配hcv9jop0ns8r.cn 移植后吃什么容易着床wzqsfys.com 心悸心慌吃什么药最好hcv7jop9ns5r.cn 什么是癔症病hcv8jop8ns6r.cn
舌头有问题看什么科hcv8jop0ns1r.cn 一天当中什么时候血压最高liaochangning.com 口且念什么hcv8jop7ns9r.cn 4月25号什么星座adwl56.com 胆汁酸高吃什么药hcv9jop7ns1r.cn
雨对什么字hcv7jop5ns6r.cn 市辖区是什么意思hcv9jop1ns1r.cn 阉割是什么意思hcv8jop9ns9r.cn 乌龟属于什么动物beikeqingting.com 刮痧和拔罐有什么区别hcv9jop4ns1r.cn
百度