臣附议是什么意思| 大连焖子是什么做的| 扁桃体发炎是什么引起的| 蓝莓什么时候开花结果| 失能是什么意思| 霉菌性阴道炎用什么药效果好| 朝秦暮楚是什么意思| lgbtq是什么意思| 鸡眼去医院挂什么科| cea升高是什么意思| 女人腿肿应该检查什么| 阴唇肥大有什么影响| 一岁宝宝流鼻涕吃什么药| 血压高可以吃什么水果| 一心一意指什么生肖| 肛门潮湿是什么情况| 耍小聪明是什么意思| 糖化高是什么意思| 骨质疏松是什么原因引起的| 舌面有裂纹是什么原因| 孕妇怕冷是什么原因| 乌龟肠胃炎用什么药| 8月1日是什么日子| 腰扭伤挂什么科| 什么是2B铅笔| 四联用药是些什么药| 嗓子痒痒是什么原因| 间隔旁型肺气肿是什么| 大腿内侧什么经络| 右侧中耳乳突炎是什么意思| 红字五行属什么| 吃什么食物能降低胆固醇| 重庆有什么烟| 胳膊上种花是什么疫苗| 马踏飞燕什么意思| 正视是什么意思| 苦瓜泡酒有什么功效和作用| 头部容易出汗是什么原因| 嘴唇发紫是什么原因引起的| 沙弥是什么意思| 重庆市长是什么级别| 圈癣是什么引起的| 为什么星星会眨眼| 哒哒是什么意思| btc是什么货币| 血糖高什么东西不能吃| 河粉是什么做的| 什么人不能喝丹参| 病人是什么生肖| 乌龟不能吃什么| 搞基是什么意思| 什么是放疗治疗| 太阳五行属什么| 二月二十五号是什么星座| 眼睛干涩是什么原因引起的| 眼圈发黑什么原因| 恻隐之心是什么意思| 生物学父亲是什么意思| 长期服用二甲双胍有什么副作用| 赤脚走路有什么好处| 女孩子命硬有什么表现| 甲状腺结节吃什么药好| 戴银镯子对身体有什么好处| 盛夏是什么意思| 天涯海角是什么生肖| 咳嗽能吃什么水果最好| 灻是什么意思| 小排畸主要检查什么| 吃深海鱼油有什么好处和坏处| 缺钙应该吃什么| 酸梅是什么水果| elle中文叫什么| 孺子是什么意思| 手书是什么| 经常吃辣椒有什么好处和坏处| 小孩头疼吃什么药| gamma什么意思| 猫咪能看到什么颜色| 吹空调咳嗽吃什么药| 金银花不能和什么一起吃| 血小板分布宽度偏低是什么原因| 血沉高忌口什么| 甲字五行属什么| 酒后手麻什么原因| 电饭煲什么牌子好| 甲状腺结节是什么| 御字五行属什么| 子宫肌瘤是什么引起的| 什么情况下容易怀孕| 六月二十九日是什么星座| 十二指肠溃疡a1期什么意思| 美国为什么不敢动朝鲜| 减肥用什么好| 三皇五帝是什么时期| 尿素是什么肥| 晚上睡觉腿酸难受是什么原因| junior什么意思| 甲状腺1类是什么意思| 阴茎长水泡是什么原因| mm表示什么| 青绿色是什么颜色| 为什么眼睛老是流泪| 胎心停了是什么原因引起的| 小蛮腰什么意思| 不是经期有少量出血是什么原因| 为什么喝咖啡会拉肚子| apk是什么格式| 汗青是什么意思| 乔峰和洪七公什么关系| 飞机什么时候开始登机| 上环什么时候去最合适| 怒发冲冠是什么意思| 难受是什么意思| 偏头痛不能吃什么食物| 厥阴病是什么意思| 惶恐是什么意思| 孕中期失眠是什么原因| 激酶是什么| 糖尿病主食吃什么好| 什么地腐烂| 下巴发黑是什么原因| 炒米泡水喝有什么功效| 检验科是做什么的| 老人脚肿吃什么药消肿| 乙肝三抗体阳性是什么意思| 追溯码是什么意思| 阴柔是什么意思| 赛治是什么药| 产复欣颗粒什么时候吃| ua是什么牌子| 糖醋排骨是什么菜系| 下身瘙痒用什么药| 排卵试纸一深一浅说明什么| 家里飞蛾多是什么原因| 红枣泡水喝有什么好处| 熊是什么意思| 安赛蜜是什么| 伊朗用什么语言| 未时左眼跳是什么预兆| 侃侃而谈是什么意思| 丧尽天良什么意思| 颈椎反曲是什么意思| 濡养是什么意思| 被蚂蚁咬了怎么止痒消肿要擦什么药| 辟谷有什么好处| 不来月经有什么危害| 杭州有什么| 狮子男和什么星座最配| 万兽之王是什么动物| fla是什么牌子| 阴性什么意思| 油嘴滑舌指什么生肖| 摩登女郎是什么意思| 左心增大是什么意思| 67什么意思| 两岁宝宝不会说话但什么都知道| 六月十号是什么星座| 头晕什么原因引起的| 血压高是什么原因引起的| 什么是钼靶检查| 知了在树上干什么| 红褐色是什么颜色| 什么事每人每天都必须认真的做| 疱疹吃什么药好| 饭后放屁多是什么原因| 什么样的人容易猝死| 义诊是什么意思| 3月9日什么星座| 老枞是什么茶| 暇步士属于什么档次| 石斛是什么东西| 猪精是什么意思| 腺病毒吃什么药| 一岁宝宝能吃什么水果| 雾化对小孩有什么影响或者副作用| 舍利子到底是什么| 阑尾是什么器官| 鼻梁长痘是什么原因| 梦见吵架是什么预兆| 甲抗是什么原因引起的| 沙漏是什么意思| 肝脏在什么位置图片| 立冬是什么意思| mac是什么牌子| 梦见跟妈妈吵架是什么意思| 痈疡是什么意思| 脾大是什么原因造成的怎么治疗| 616是什么意思| 尿毒症什么原因引起的| 1970年是什么命| 小妮子什么意思| 血蛋白低会有什么影响| 鸡和什么属相最配对| hoho是什么意思| 沾花惹草是什么生肖| 贞操锁是什么| 吃榴莲有什么好处和坏处| 什么是复句| 男人吃什么壮阳最快| 24属什么生肖| 晚上猫叫有什么预兆| 军校毕业是什么军衔| 荔枝什么时候过季| 什么是霉菌| 天上的星星是什么| 气管炎吃什么好| 睡醒口干舌燥是什么原因| ou是什么意思| 胸围110是什么罩杯| 补钙吃什么维生素| 鼻子上的痣有什么寓意| 什么样的月亮| 梦见已故朋友什么预兆| andy是什么意思| 眼底照相是检查什么| 表现手法是什么| 蜂蜜的波美度是什么意思| cpa是什么意思| 蝌蚪吃什么食物| 芙蓉是什么意思| 文科生选什么专业| 吃什么能增强免疫力和抵抗力| 免疫力低下吃什么| mdzz是什么意思| 大利月小利月什么意思| 腐生是什么意思| 10000是什么电话| 婴幼儿吃什么奶粉好| 哮喘吃什么药最好| 11五行属什么| 年糕是什么做的| 肠胃不好吃什么水果比较好| 今天中国什么节日| 黄疸高有什么危害| ghost是什么意思| 来大姨妈不能吃什么水果| 系统b超主要检查什么| 县副局长是什么级别| 痔疮是什么样的| 火龙果什么季节成熟| 为什么不建议小孩吃罗红霉素| 什么的高楼| 减肥医院挂什么科| 属虎和什么属相相冲| 孩子爱咬指甲是什么原因| 铁蛋白偏低是什么意思| 梦见吃粉条是什么预兆| rmb是什么货币| 陆地上最大的动物是什么| 乌龙茶适合什么季节喝| 什么东西最伤肾| ntr是什么意思啊| w代表什么单位| 今天穿什么衣服合适| 生二胎应该注意什么| 状元红又叫什么荔枝| 娃娃鱼属于什么类动物| 木节念什么| 为什么没有西京| 奈我何是什么意思| ppl什么意思| 喜欢紫色代表什么| 1103是什么星座| 梦到和男朋友分手是什么征兆| 百度Jump to content

浙江杭州某房地产项目债权融资2000万元-5000万元

From Wikipedia, the free encyclopedia
百度 “此前的假计价器一般是将真的计价器拆下来,然后在非法汽修店复制。

In computational complexity theory, a computational hardness assumption is the hypothesis that a particular problem cannot be solved efficiently (where efficiently typically means "in polynomial time"). It is not known how to prove (unconditional) hardness for essentially any useful problem. Instead, computer scientists rely on reductions to formally relate the hardness of a new or complicated problem to a computational hardness assumption about a problem that is better-understood.

Computational hardness assumptions are of particular importance in cryptography. A major goal in cryptography is to create cryptographic primitives with provable security. In some cases, cryptographic protocols are found to have information theoretic security; the one-time pad is a common example. However, information theoretic security cannot always be achieved; in such cases, cryptographers fall back to computational security. Roughly speaking, this means that these systems are secure assuming that any adversaries are computationally limited, as all adversaries are in practice.

Computational hardness assumptions are also useful for guiding algorithm designers: a simple algorithm is unlikely to refute a well-studied computational hardness assumption such as P ≠ NP.

Comparing hardness assumptions

[edit]

Computer scientists have different ways of assessing which hardness assumptions are more reliable.

Strength of hardness assumptions

[edit]

We say that assumption is stronger than assumption when implies (and the converse is false or not known). In other words, even if assumption were false, assumption may still be true, and cryptographic protocols based on assumption may still be safe to use. Thus when devising cryptographic protocols, one hopes to be able to prove security using the weakest possible assumptions.

Average-case vs. worst-case assumptions

[edit]

An average-case assumption says that a specific problem is hard on most instances from some explicit distribution, whereas a worst-case assumption only says that the problem is hard on some instances. For a given problem, average-case hardness implies worst-case hardness, so an average-case hardness assumption is stronger than a worst-case hardness assumption for the same problem. Furthermore, even for incomparable problems, an assumption like the exponential time hypothesis is often considered preferable to an average-case assumption like the planted clique conjecture.[1] However, for cryptographic applications, knowing that a problem has some hard instance (the problem is hard in the worst-case) is useless because it does not provide us with a way of generating hard instances.[2] Fortunately, many average-case assumptions used in cryptography (including RSA, discrete log, and some lattice problems) can be based on worst-case assumptions via worst-case-to-average-case reductions.[3]

Falsifiability

[edit]

A desired characteristic of a computational hardness assumption is falsifiability, i.e. that if the assumption were false, then it would be possible to prove it. In particular, Naor (2003) introduced a formal notion of cryptographic falsifiability.[4] Roughly, a computational hardness assumption is said to be falsifiable if it can be formulated in terms of a challenge: an interactive protocol between an adversary and an efficient verifier, where an efficient adversary can convince the verifier to accept if and only if the assumption is false.

Common cryptographic hardness assumptions

[edit]

There are many cryptographic hardness assumptions in use. This is a list of some of the most common ones, and some cryptographic protocols that use them.

Integer factorization

[edit]

Given a composite integer , and in particular one which is the product of two large primes , the integer factorization problem is to find and (more generally, find primes such that ). It is a major open problem to find an algorithm for integer factorization that runs in time polynomial in the size of representation (). The security of many cryptographic protocols rely on the assumption that integer factorization is hard (i.e. cannot be solved in polynomial time). Cryptosystems whose security is equivalent to this assumption include Rabin signature and the Okamoto–Uchiyama cryptosystem. Many more cryptosystems rely on stronger assumptions such as RSA, residuosity problems, and phi-hiding.

RSA problem

[edit]

Given a composite number , exponent and number , the RSA problem is to find . The problem is conjectured to be hard, but becomes easy given the factorization of . In the RSA cryptosystem, is the public key, is the encryption of message , and the factorization of is the secret key used for decryption.

Residuosity problems

[edit]

Given a composite number and integers , the residuosity problem is to determine whether there exists (alternatively, find an) such that

Important special cases include the quadratic residuosity problem and the decisional composite residuosity problem. As in the case of RSA, this problem (and its special cases) are conjectured to be hard, but become easy given the factorization of . Some cryptosystems that rely on the hardness of residuousity problems include:

Phi-hiding assumption

[edit]

For a composite number , it is not known how to efficiently compute its Euler's totient function . The phi-hiding assumption postulates that it is hard to compute , and furthermore even computing any prime factors of is hard. This assumption is used in the Cachin–Micali–Stadler PIR protocol.[5]

Discrete log problem (DLP)

[edit]

Given elements and from a group , the discrete log problem asks for an integer such that . The discrete log problem is not known to be comparable to integer factorization, but their computational complexities are closely related.

Most cryptographic protocols related to the discrete log problem actually rely on the stronger Diffie–Hellman assumption: given group elements , where is a generator and are random integers, it is hard to find . Examples of protocols that use this assumption include the original Diffie–Hellman key exchange, as well as the ElGamal encryption (which relies on the yet stronger Decisional Diffie–Hellman (DDH) variant).

Multilinear maps

[edit]

A multilinear map is a function (where are groups) such that for any and ,

.

For cryptographic applications, one would like to construct groups and a map such that the map and the group operations on can be computed efficiently, but the discrete log problem on is still hard.[6] Some applications require stronger assumptions, e.g. multilinear analogs of Diffie-Hellman assumptions.

For the special case of , bilinear maps with believable security have been constructed using Weil pairing and Tate pairing.[7] For many constructions have been proposed in recent years, but many of them have also been broken, and currently there is no consensus about a safe candidate.[8]

Some cryptosystems that rely on multilinear hardness assumptions include:

Lattice problems

[edit]

The most fundamental computational problem on lattices is the shortest vector problem (SVP): given a lattice , find the shortest non-zero vector . Most cryptosystems require stronger assumptions on variants of SVP, such as shortest independent vectors problem (SIVP), GapSVP,[10] or Unique-SVP.[11]

The most useful lattice hardness assumption in cryptography is for the learning with errors (LWE) problem: Given samples to , where for some linear function , it is easy to learn using linear algebra. In the LWE problem, the input to the algorithm has errors, i.e. for each pair with some small probability. The errors are believed to make the problem intractable (for appropriate parameters); in particular, there are known worst-case to average-case reductions from variants of SVP.[12]

For quantum computers, factoring and discrete log problems are easy, but lattice problems are conjectured to be hard.[13] This makes some lattice-based cryptosystems candidates for post-quantum cryptography.

Some cryptosystems that rely on hardness of lattice problems include:

Non-cryptographic hardness assumptions

[edit]

As well as their cryptographic applications, hardness assumptions are used in computational complexity theory to provide evidence for mathematical statements that are difficult to prove unconditionally. In these applications, one proves that the hardness assumption implies some desired complexity-theoretic statement, instead of proving that the statement is itself true. The best-known assumption of this type is the assumption that P ≠ NP,[14] but others include the exponential time hypothesis,[15] the planted clique conjecture, and the unique games conjecture.[16]

C-hard problems

[edit]

Many worst-case computational problems are known to be hard or even complete for some complexity class , in particular NP-hard (but often also PSPACE-hard, PPAD-hard, etc.). This means that they are at least as hard as any problem in the class . If a problem is -hard (with respect to polynomial time reductions), then it cannot be solved by a polynomial-time algorithm unless the computational hardness assumption is false.

Exponential time hypothesis (ETH) and variants

[edit]

The exponential time hypothesis (ETH) is a strengthening of hardness assumption, which conjectures that not only does the Boolean satisfiability problem (SAT) not have a polynomial time algorithm, it furthermore requires exponential time ().[17] An even stronger assumption, known as the strong exponential time hypothesis (SETH) conjectures that -SAT requires time, where . ETH, SETH, and related computational hardness assumptions allow for deducing fine-grained complexity results, e.g. results that distinguish polynomial time and quasi-polynomial time,[1] or even versus .[18] Such assumptions are also useful in parametrized complexity.[19]

Average-case hardness assumptions

[edit]

Some computational problems are assumed to be hard on average over a particular distribution of instances. For example, in the planted clique problem, the input is a random graph sampled, by sampling an Erd?s–Rényi random graph and then "planting" a random -clique, i.e. connecting uniformly random nodes (where ), and the goal is to find the planted -clique (which is unique w.h.p.).[20] Another important example is Feige's Hypothesis, which is a computational hardness assumption about random instances of 3-SAT (sampled to maintain a specific ratio of clauses to variables).[21] Average-case computational hardness assumptions are useful for proving average-case hardness in applications like statistics, where there is a natural distribution over inputs.[22] Additionally, the planted clique hardness assumption has also been used to distinguish between polynomial and quasi-polynomial worst-case time complexity of other problems,[23] similarly to the exponential time hypothesis.

Unique games

[edit]

The unique label cover problem is a constraint satisfaction problem, where each constraint involves two variables , and for each value of there is a unique value of that satisfies . Determining whether all the constraints can be satisfied is easy, but the unique game conjecture (UGC) postulates that determining whether almost all the constraints (-fraction, for any constant ) can be satisfied or almost none of them (-fraction) can be satisfied is NP-hard.[16] Approximation problems are often known to be NP-hard assuming UGC; such problems are referred to as UG-hard. In particular, assuming UGC there is a semidefinite programming algorithm that achieves optimal approximation guarantees for many important problems.[24]

Small set expansion

[edit]

Closely related to the unique label cover problem is the small set expansion (SSE) problem: Given a graph , find a small set of vertices (of size ) whose edge expansion is minimal. It is known that if SSE is hard to approximate, then so is unique label cover. Hence, the small set expansion hypothesis, which postulates that SSE is hard to approximate, is a stronger (but closely related) assumption than the unique game conjecture.[25] Some approximation problems are known to be SSE-hard[26] (i.e. at least as hard as approximating SSE).

The 3SUM conjecture

[edit]

Given a set of numbers, the 3SUM problem asks whether there is a triplet of numbers whose sum is zero. There is a quadratic-time algorithm for 3SUM, and it has been conjectured that no algorithm can solve 3SUM in "truly sub-quadratic time": the 3SUM conjecture is the computational hardness assumption that there are no -time algorithms for 3SUM (for any constant ). This conjecture is useful for proving near-quadratic lower bounds for several problems, mostly from computational geometry.[27]

See also

[edit]

References

[edit]
  1. ^ a b Braverman, Mark; Ko, Young Kun; Weinstein, Omri (2015). "Approximating the best Nash Equilibrium in -time breaks the Exponential Time Hypothesis". Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics. pp. 970–982. doi:10.1137/1.9781611973730.66. ISBN 978-1-61197-374-7.
  2. ^ J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman and Hall/CRC Cryptography and Network Security Series), Chapman and Hall/CRC, 2007.
  3. ^ Goldwasser, Shafi; Kalai, Yael Tauman (2016). "Cryptographic Assumptions: A Position Paper". Theory of Cryptography Conference (TCC) 2016. Lecture Notes in Computer Science. Vol. 9562. Springer. pp. 505–522. doi:10.1007/978-3-662-49096-9_21. ISBN 978-3-662-49095-2.
  4. ^ Naor, Moni (2003). "On cryptographic assumptions and challenges". In Boneh, Dan (ed.). Advances in Cryptology – CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Lecture Notes in Computer Science. Vol. 2729. Berlin: Springer. pp. 96–109. doi:10.1007/978-3-540-45146-4_6. ISBN 978-3-540-40674-7. MR 2093188.
  5. ^ Cachin, Christian; Micali, Silvio; Stadler, Markus (1999). "Computationally Private Information Retrieval with Polylogarithmic Communication". In Stern, Jacques (ed.). Advances in Cryptology — EUROCRYPT '99. Lecture Notes in Computer Science. Vol. 1592. Springer. pp. 402–414. doi:10.1007/3-540-48910-X_28. ISBN 978-3-540-65889-4. S2CID 29690672.
  6. ^ Boneh, Dan; Silverberg, Alice (2002). "Applications of Multilinear Forms to Cryptography". Cryptology ePrint Archive.
  7. ^ Dutta, Ratna; Barua, Rana; Sarkar, Palash (2004). "Pairing-Based Cryptographic Protocols : A Survey". Cryptology ePrint Archive.
  8. ^ Albrecht, Martin R. "Are Graded Encoding Scheme broken yet?". Retrieved 22 March 2018.
  9. ^ Garg, Sanjam; Gentry, Craig; Halevi, Shai; Raykova, Mariana; Sahai, Amit; Waters, Brent (2016). "Candidate Indistinguishability Obfuscation and Functional Encryption for All Circuits" (PDF). SIAM Journal on Computing. 45 (3). SIAM: 882–929. doi:10.1137/14095772X.
  10. ^ Peikert, Chris (2009). "Public-key cryptosystems from the worst-case shortest vector problem: extended abstract". Proceedings on 41st Annual ACM Symposium on Theory of Computing (STOC). pp. 333–342. doi:10.1145/1536414.1536461.
  11. ^ Ajtai, Miklós; Dwork, Cynthia (1997). "A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence". Proceedings on 29th Annual ACM Symposium on Theory of Computing (STOC). pp. 284–293. doi:10.1145/258533.258604. ISBN 0-89791-888-6.
  12. ^ Regev, Oded (2010). "The Learning with Errors Problem (Invited Survey)". Conference on Computational Complexity (CCC) 2010. pp. 191–204. doi:10.1109/CCC.2010.26. ISBN 978-1-4244-7214-7.
  13. ^ Peikert, Chris (2016). "A Decade of Lattice Cryptography". Foundations and Trends in Theoretical Computer Science. 10 (4): 283–424. doi:10.1561/0400000074.
  14. ^ Fortnow, Lance (2009). "The status of the P versus NP problem" (PDF). Communications of the ACM. 52 (9): 78–86. doi:10.1145/1562164.1562186. S2CID 5969255. Archived from the original (PDF) on 2025-08-06..
  15. ^ Woeginger, Gerhard (2003). "Exact algorithms for NP-hard problems: A survey". Combinatorial Optimization — Eureka, You Shrink!. Lecture Notes in Computer Science. Vol. 2570. Springer-Verlag. pp. 185–207. doi:10.1007/3-540-36478-1_17. ISBN 978-3-540-00580-3. S2CID 289357..
  16. ^ a b Khot, Subhash (2010). "On the Unique Games Conjecture". Proc. 25th IEEE Conference on Computational Complexity (PDF). pp. 99–121. doi:10.1109/CCC.2010.19..
  17. ^ Impagliazzo, Russell; Paturi, Ramamohan (1999). "The Complexity of k-SAT". Proc. 14th IEEE Conf. on Computational Complexity. pp. 237–240. doi:10.1109/CCC.1999.766282. ISBN 0-7695-0075-7.
  18. ^ Abboud, Amir; Vassilevska-Williams, Virginia; Weimann, Oren (2014). "Consequences of Faster Alignment of Sequences". Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014. Lecture Notes in Computer Science. Vol. 8572. pp. 39–51. doi:10.1007/978-3-662-43948-7_4. ISBN 978-3-662-43947-0.
  19. ^ Lokshtanov, Daniel; Marx, Daniel; Saurabh, Saket (2011). "Lower bounds based on the Exponential Time Hypothesis". Bulletin of the EATCS. 105: 41–72.
  20. ^ Arora, Sanjeev; Barak, Boaz (2009). Computational Complexity: A Modern Approach. Cambridge University Press. pp. 362–363. ISBN 9780521424264..
  21. ^ Feige, Uriel (2002). "Relations between average case complexity and approximation complexity". Proceedings on 34th Annual ACM Symposium on Theory of Computing (STOC). pp. 534–543. doi:10.1145/509907.509985. ISBN 1-58113-495-9.
  22. ^ Berthet, Quentin; Rigollet, Philippe (2013). "Complexity Theoretic Lower Bounds for Sparse Principal Component Detection". COLT 2013. pp. 1046–1066.
  23. ^ Hazan, Elad; Krauthgamer, Robert (2011). "How Hard Is It to Approximate the Best Nash Equilibrium?". SIAM Journal on Computing. 40 (1): 79–91. CiteSeerX 10.1.1.139.7326. doi:10.1137/090766991.
  24. ^ Raghavendra, Prasad (2008). "Optimal algorithms and inapproximability results for every CSP?". 40th Annual ACM Symposium on theory of Computing (STOC) 2008. pp. 245–254. doi:10.1145/1374376.1374414. ISBN 978-1-60558-047-0.
  25. ^ Raghavendra, Prasad; Steurer, David (2010). "Graph Expansion and the Unique Games Conjecture". 42nd Annual ACM Symposium on theory of Computing (STOC) 2010. pp. 755–764. doi:10.1145/1806689.1806792. ISBN 978-1-4503-0050-6.
  26. ^ Wu, Yu; Austrin, Per; Pitassi, Toniann; Liu, David (2014). "Inapproximability of Treewidth and Related Problems". Journal of Artificial Intelligence Research. 49: 569–600. doi:10.1613/jair.4030.
  27. ^ Vassilevska Williams, Virginia (2018). "On some fine-grained questions in algorithms and complexity". ICM 2018 (PDF).
嘴唇颜色深是什么原因 1966年是什么命 同房出血是什么原因造成的 李商隐被称为什么 什么是抗凝药物
男人射的快是什么原因 为什么电脑 婴儿便秘怎么办什么方法最有效 工程院院士是什么级别 马与什么属相相克相冲
大便黑色的是什么原因 iga肾病是什么病 头皮毛囊炎用什么药 脾阳虚吃什么药 小腿痛是什么原因
药流后吃什么消炎药比较好 人总放屁是什么原因 hbeag阳性是什么意思 窦骁的父母是干什么的 利血平是什么药
大户人家什么意思adwl56.com 掉头发吃什么hcv8jop8ns5r.cn 发晕是什么原因引起的hkuteam.com 心脏什么情况下需要支架hcv9jop3ns1r.cn 鱼肚是什么hcv9jop5ns0r.cn
细胞角蛋白19片段是什么意思hcv9jop5ns4r.cn 床头朝什么方向是正确的hcv9jop2ns1r.cn 什么是腺样体hcv8jop8ns6r.cn ab制是什么意思hcv9jop0ns5r.cn 煦字五行属什么hcv8jop0ns2r.cn
梦见死人是什么意思hcv9jop3ns3r.cn 十二指肠球部溃疡吃什么药travellingsim.com 猴子屁股为什么是红色helloaicloud.com 女人梦见龙是什么征兆hcv8jop9ns9r.cn 没有力气是什么原因clwhiglsz.com
口水多是什么原因hcv7jop5ns1r.cn 腊肠炒什么菜好吃hcv8jop6ns6r.cn 矢气是什么意思hcv7jop7ns1r.cn 灌肠用什么水hcv9jop5ns9r.cn 浅黄色是什么颜色hcv8jop7ns9r.cn
百度