脚脖子浮肿是什么原因引起的| 无名指和食指一样长代表什么| 人中跳动是什么原因| 什么是隐形矫正牙齿| 搬新家有什么讲究和准备的| 院长是什么级别| 精神恍惚是什么意思| 心脏下边是什么器官| 什么洗发水最好| 宿便是什么意思| 答谢宴是什么意思| 吃什么对头发有好处| 慈禧和溥仪是什么关系| 秉字五行属什么| 一热就咳嗽是什么原因| 阴虚火旺什么意思| 什么是大男子主义| 知我者莫若你什么意思| 世界上最贵的烟是什么烟| 医院减肥挂什么科| spc是什么意思| 预防老年痴呆吃什么药| 去肝火喝什么茶好| 苍苍什么| 感冒了吃什么水果| 打灰是什么意思| 脚痒用什么药膏最有效| 海丽汉森是什么档次| 什么是好人| 烟火气是什么意思| 寒湿吃什么药| 猪脚焖什么好吃| 肝fnh是什么病| 毕加索全名是什么| 梦见死去的亲人又活了是什么意思| 乙肝有抗体是什么意思| 德国高速为什么不限速| 胸痛是什么原因| 压床娃娃有什么讲究吗| 鹿茸有什么功效| 青蒜炒什么好吃| 聚酯纤维是什么材料| 维生素c主治什么| 孩子是ab型父母是什么血型| XX是什么意思| mdt是什么| hill什么意思| 持续高烧不退是什么原因| 1月4号是什么星座| 大战三百回合是什么意思| 老气横秋是什么意思| 药流后可以吃什么水果| 坐西向东是什么宅| 经由是什么意思| 鲨鱼用什么呼吸| 天方夜谭是什么意思| 加拿大签证需要什么材料| 白带褐色什么原因| 低血糖是什么原因引起的| 四菜一汤是什么意思| 世界7大奇迹是什么| 人为什么会得阑尾炎| 变异性哮喘什么症状| 苎麻是什么面料| 甜菜是什么菜| 慢性扁桃体炎吃什么药| 做梦捡钱是什么预兆| 利空什么意思| 神经性梅毒有什么症状| 盆腔积液是什么原因| 眼睛干涩有异物感用什么眼药水| 排骨炖什么汤好喝| 头发出汗多是什么原因| 低盐饮食有利于预防什么| 四大洋分别是什么| 前胸后背长痘痘用什么药| 洗耳恭听什么意思| 排便困难拉不出来是什么原因| 大姨妈来了喝什么好| 阿魏酸是什么| 龙虾吃什么| 中年人吃什么钙片补钙效果好| 六八年属什么生肖| zara中文叫什么| 农历10月14日是什么星座| 白头发有什么方法变黑| 看头部挂什么科| 感冒流黄鼻涕吃什么药| 附耳是什么意思| 低分化腺癌是什么意思| 檄文是什么意思| 吃鹅蛋有什么好处和坏处| 兼性厌氧是什么意思| 榨精是什么意思| co是什么意思| 通马桶的工具叫什么| 行大运是什么意思| 有志什么成| 盗汗是什么原因造成的| 高抬腿运动有什么好处| 月经推迟半个月是什么原因| 蚊子怕什么植物| 化脓性扁桃体炎吃什么药| 手抖是什么原因引起的| 7月6号什么星座| 今年流行什么颜色头发| 大姨妈来了喝红糖水有什么功效| 黄牌是什么意思| 肌醇是什么东西| 鼻子有臭味是什么原因| 宸字属于五行属什么| 点痣用什么方法最好| cosplay什么意思| 覅什么意思| 什么叫一个周期| 拍胸片挂什么科室| 梦见离家出走是什么意思| 2021什么年| 元神是什么意思| 满字是什么结构| 怀孕吃核桃对宝宝有什么好处| 人乳头瘤病毒56型阳性是什么意思| 孕妇缺铁对胎儿有什么影响| ldl是什么意思| 肺部拍片挂什么科| 四川酸菜是什么菜| 塑料袋是什么垃圾| 吃秋葵有什么好处| 什么是鬼压床| 海蜇长什么样| aigner是什么牌子| 生殖疱疹用什么药效果好| 苏打和小苏打有什么区别| 什么是命中注定| 无量寿经讲的是什么| 1889年属什么生肖| 编外人员是什么意思| 捡什么废品最值钱| 弱冠之年是什么意思| 深圳市市长是什么级别| 排卵期是指什么时候| 仙逝是什么意思| 奇异果和猕猴桃有什么区别| 陈惠敏和陈慧琳什么关系| 病毒是什么生物| 血常规是什么意思| 已故是什么意思| 离职是什么意思| 疏朗是什么意思| 痛风吃什么药好得快| 成家是什么意思| 薤白的俗名叫什么| 龙胆草长什么样| 深圳属于什么方向| 痛风吃什么消炎药| 名声是什么意思| 脊髓空洞症是什么病| 莫名是什么意思| 尿结石是什么症状| 虾片是什么做的| 什么竹水果| 缺钠有什么症状和危害| 为什么叫八路军| 什么脸型适合什么发型| 大牛是什么意思| 什么散步| 三羊念什么字| 风疹吃什么药好得快| 梦见买衣服是什么预兆| 耳鸣什么原因引起| 心脏造影是什么检查| 换气是什么意思| 转氨酶高是什么问题| 胃酸过多吃点什么食物比较好| 癔病是一种什么病| 脸颊红是什么原因| ca125高是什么原因| 教学相长是什么意思| 射手和什么星座最配| 为什么睡觉会突然抖一下| 果是什么结构的字| 产品批号什么意思| 阿司匹林是什么| 务农是什么意思| 月经来了一点就没了是什么原因| 为什么早上起来眼睛肿| 困是什么意思| 胃气不通什么症状| 皮肤过敏吃什么药好| 掐人中有什么作用| 妇科活检是什么意思| 为什么午睡起来会头疼| 梦到和别人吵架是什么意思| 童养媳什么意思| 乌合之众什么意思| 七月十号是什么日子| sp是什么面料| 牛黄清心丸治什么病| gg是什么意思| 下眼皮肿是什么原因| 杨梅酒喝了有什么好处和功效| 5点到7点是什么时辰| 法脉是什么意思| 甘露醇是什么| 子衿是什么意思| mrd是什么意思| hg是什么单位| 梦见穿袜子是什么意思| 女生怀孕的前兆是什么| 昕字五行属什么| 颠是什么意思| 杠杠滴是什么意思| 做梦梦见大蟒蛇什么意思| 经常过敏是什么原因| 上海最高的楼叫什么| 省政协主席什么级别| 为什么马卡龙那么贵| 微信附近的人都是些什么人| 张国立的老婆叫什么名字| 窦性心律不齐是什么| 什么是共济失调| 迈之灵治什么病| 打狂犬疫苗不能吃什么| 更年期什么意思| 寿司用什么米做好吃| 夏天吃什么| 牵牛花什么时候开花| 小ck属于什么档次| 属虎适合佩戴什么饰品| 治疗梅毒用什么药最好| 肺炎衣原体和支原体有什么区别| 迪奥是什么| 阳气最强的树是什么树| 低烧吃什么药好| 什么牌子的蛋白质粉比较好| 胆囊结石挂什么科| 沉脉是什么意思| 心脏早搏什么意思| 外婆菜是什么菜做的| 宝宝屁多是什么原因| 右脸长痣代表什么意思| 2006年出生属什么| 咳嗽吃什么好| 汪峰什么星座| 来月经吃什么对身体好| 媒婆是什么意思| 三是什么意思| 嘴巴里长水泡是什么原因| 什么人容易得尿毒症| 璐字五行属什么| 子宫偏小是什么原因| tissot是什么牌子1853| 启五行属什么| 奕字属于五行属什么| 冰粉是用什么做的| 谷维素片治什么病| 鱼油有什么作用| 中国的国服是什么服装| 情面是什么意思| 玩得什么| 吃什么东西下火| 武则天墓为什么不敢挖| 乔丹是什么品牌| 小手指麻木是什么原因引起的| 百度Jump to content

乙肝二四五阳性什么意思

From Wikipedia, the free encyclopedia
百度 子宫内膜增厚吃什么药

In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector spaces (often ) or free modules (often ) are generally considered.

For all the problems below, assume that we are given (in addition to other more specific inputs) a basis for the vector space V and a norm N. The norm usually considered is the Euclidean norm L2. However, other norms (such as Lp) are also considered and show up in a variety of results.[1]

Throughout this article, let denote the length of the shortest non-zero vector in the lattice L: that is,

Shortest vector problem (SVP)

[edit]
This is an illustration of the shortest vector problem (basis vectors in blue, shortest vector in red).

In the SVP, a basis of a vector space V and a norm N (often L2) are given for a lattice L and one must find the shortest non-zero vector in V, as measured by N, in L. In other words, the algorithm should output a non-zero vector v such that ??.

In the γ-approximation version SVPγ, one must find a non-zero lattice vector of length at most for given ??.

Hardness results

[edit]

The exact version of the problem is only known to be NP-hard for randomized reductions.[2][3] By contrast, the corresponding problem with respect to the uniform norm is known to be NP-hard.[4]

Algorithms for the Euclidean norm

[edit]

To solve the exact version of the SVP under the Euclidean norm, several different approaches are known, which can be split into two classes: algorithms requiring superexponential time () and memory, and algorithms requiring both exponential time and space () in the lattice dimension. The former class of algorithms most notably includes lattice enumeration[5][6][7] and random sampling reduction,[8][9] while the latter includes lattice sieving,[10][11][12] computing the Voronoi cell of the lattice,[13][14] and discrete Gaussian sampling.[15] An open problem is whether algorithms for solving exact SVP exist running in single exponential time () and requiring memory scaling polynomially in the lattice dimension.[16]

To solve the γ-approximation version SVPγ for for the Euclidean norm, the best known approaches are based on using lattice basis reduction. For large ??, the Lenstra–Lenstra–Lovász (LLL) algorithm can find a solution in time polynomial in the lattice dimension. For smaller values , the Block Korkine-Zolotarev algorithm (BKZ)[17][18][19] is commonly used, where the input to the algorithm (the blocksize ) determines the time complexity and output quality: for large approximation factors , a small block size suffices, and the algorithm terminates quickly. For small , larger are needed to find sufficiently short lattice vectors, and the algorithm takes longer to find a solution. The BKZ algorithm internally uses an exact SVP algorithm as a subroutine (running in lattices of dimension at most ), and its overall complexity is closely related to the costs of these SVP calls in dimension ??.

GapSVP

[edit]

The problem GapSVPβ consists of distinguishing between the instances of SVP in which the length of the shortest vector is at most or larger than ??, where can be a fixed function of the dimension of the lattice ??. Given a basis for the lattice, the algorithm must decide whether or ??. Like other promise problems, the algorithm is allowed to err on all other cases.

Yet another version of the problem is GapSVPζ,γ for some functions ζ and γ. The input to the algorithm is a basis and a number . It is assured that all the vectors in the Gram–Schmidt orthogonalization are of length at least 1, and that and that ??, where is the dimension. The algorithm must accept if ??, and reject if ??. For large (i.e. ??), the problem is equivalent to GapSVPγ because[20] a preprocessing done using the LLL algorithm makes the second condition (and hence, ??) redundant.

Closest vector problem (CVP)

[edit]
This is an illustration of the closest vector problem (basis vectors in blue, external vector in green, closest vector in red).

In CVP, a basis of a vector space V and a metric M (often L2) are given for a lattice L, as well as a vector v in V but not necessarily in L. It is desired to find the vector in L closest to v (as measured by M). In the -approximation version CVPγ, one must find a lattice vector at distance at most .

Relationship with SVP

[edit]

The closest vector problem is a generalization of the shortest vector problem. It is easy to show that given an oracle for CVPγ (defined below), one can solve SVPγ by making some queries to the oracle.[21] The naive method to find the shortest vector by calling the CVPγ oracle to find the closest vector to 0 does not work because 0 is itself a lattice vector and the algorithm could potentially output 0.

The reduction from SVPγ to CVPγ is as follows: Suppose that the input to the SVPγ is the basis for lattice . Consider the basis and let be the vector returned by CVPγ(Bi, bi). The claim is that the shortest vector in the set is the shortest vector in the given lattice.

Hardness results

[edit]

Goldreich et al. showed that any hardness of SVP implies the same hardness for CVP.[22] Using PCP tools, Arora et al. showed that CVP is hard to approximate within factor unless .[23] Dinur et al. strengthened this by giving a NP-hardness result with for .[24]

Sphere decoding

[edit]

Algorithms for CVP, especially the Fincke and Pohst variant,[6] have been used for data detection in multiple-input multiple-output (MIMO) wireless communication systems (for coded and uncoded signals).[25][13] In this context it is called sphere decoding due to the radius used internal to many CVP solutions.[26]

It has been applied in the field of the integer ambiguity resolution of carrier-phase GNSS (GPS).[27] It is called the LAMBDA method in that field. In the same field, the general CVP problem is referred to as Integer Least Squares.

GapCVP

[edit]

This problem is similar to the GapSVP problem. For GapSVPβ, the input consists of a lattice basis and a vector , and the algorithm must answer whether one of the following holds:

  • there is a lattice vector such that the distance between it and is at most 1, and
  • every lattice vector is at a distance greater than away from .

The opposite condition is that the closest lattice vector is at a distance , hence the name GapCVP.

Known results

[edit]

The problem is trivially contained in NP for any approximation factor.

Schnorr, in 1987, showed that deterministic polynomial time algorithms can solve the problem for .[28] Ajtai et al. showed that probabilistic algorithms can achieve a slightly better approximation factor of .[10]

In 1993, Banaszczyk showed that GapCVPn is in .[29] In 2000, Goldreich and Goldwasser showed that puts the problem in both NP and coAM.[30] In 2005, Aharonov and Regev showed that for some constant , the problem with is in .[31]

For lower bounds, Dinur et al. showed in 1998 that the problem is NP-hard for .[32]

Shortest independent vectors problem (SIVP)

[edit]

Given a lattice L of dimension n, the algorithm must output n linearly independent so that , where the right-hand side considers all bases of the lattice.

In the -approximate version, given a lattice L with dimension n, one must find n linearly independent vectors of length ??, where is the ??th successive minimum of ??.

Bounded distance decoding

[edit]

This problem is similar to CVP. Given a vector such that its distance from the lattice is at most , the algorithm must output the closest lattice vector to it.

Covering radius problem

[edit]

Given a basis for the lattice, the algorithm must find the largest distance (or in some versions, its approximation) from any vector to the lattice.

Shortest basis problem

[edit]

Many problems become easier if the input basis consists of short vectors. An algorithm that solves the Shortest Basis Problem (SBP) must, given a lattice basis ??, output an equivalent basis such that the length of the longest vector in is as short as possible.

The approximation version SBPγ problem consist of finding a basis whose longest vector is at most times longer than the longest vector in the shortest basis.

Use in cryptography

[edit]

Average-case hardness of problems forms a basis for proofs-of-security for most cryptographic schemes. However, experimental evidence suggests that most NP-hard problems lack this property: they are probably only worst case hard. Many lattice problems have been conjectured or proven to be average-case hard, making them an attractive class of problems to base cryptographic schemes on. Moreover, worst-case hardness of some lattice problems have been used to create secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers.

The above lattice problems are easy to solve if the algorithm is provided with a "good" basis. Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time.[33] This algorithm and its further refinements were used to break several cryptographic schemes, establishing its status as a very important tool in cryptanalysis. The success of LLL on experimental data led to a belief that lattice reduction might be an easy problem in practice; however, this belief was challenged in the late 1990s, when several new results on the hardness of lattice problems were obtained, starting with the result of Ajtai.[2]

In his seminal papers, Ajtai showed that the SVP problem was NP-hard and discovered some connections between the worst-case complexity and average-case complexity of some lattice problems.[2][3] Building on these results, Ajtai and Dwork created a public-key cryptosystem whose security could be proven using only the worst case hardness of a certain version of SVP,[34] thus making it the first result to have used worst-case hardness to create secure systems.[35]

See also

[edit]

References

[edit]
  1. ^ Khot, Subhash (2005). "Hardness of approximating the shortest vector problem in lattices". J. ACM. 52 (5): 789–808. doi:10.1145/1089023.1089027. S2CID 13438130.
  2. ^ a b c Ajtai, M. (1996). "Generating hard instances of lattice problems". Proceedings of the Twenty-Eighth annual ACM symposium on Theory of computing. Philadelphia, Pennsylvania, United States: ACM. pp. 99–108. doi:10.1145/237814.237838. ISBN 978-0-89791-785-8. S2CID 6864824.
  3. ^ a b Ajtai, Miklós (1998). "The shortest vector problem in L2 is NP-hard for randomized reductions". Proceedings of the thirtieth annual ACM symposium on Theory of computing. Dallas, Texas, United States: ACM. pp. 10–19. doi:10.1145/276698.276705. ISBN 978-0-89791-962-3. S2CID 4503998.
  4. ^ van Emde Boas, Peter (1981). "Another NP-complete problem and the complexity of computing short vectors in a lattice". Technical Report 8104. University of Amsterdam, Department of Mathematics, Netherlands.
  5. ^ Kannan, Ravi (1983). "Improved algorithms for integer programming and related lattice problems". Proceedings of the fifteenth annual ACM symposium on Theory of computing - STOC '83. New York, NY, USA: ACM. pp. 193–206. doi:10.1145/800061.808749. ISBN 978-0-89791-099-6. S2CID 18181112.
  6. ^ a b Fincke, U.; Pohst, M. (1985). "Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis". Math. Comp. 44 (170): 463–471. doi:10.1090/S0025-5718-1985-0777278-8.
  7. ^ Gama, Nicolas; Nguyen, Phong Q.; Regev, Oded (2025-08-06). "Lattice Enumeration Using Extreme Pruning". Advances in Cryptology – EUROCRYPT 2010. Lecture Notes in Computer Science. Vol. 6110. Springer, Berlin, Heidelberg. pp. 257–278. doi:10.1007/978-3-642-13190-5_13. ISBN 978-3-642-13189-9. S2CID 1938519.
  8. ^ Schnorr, Claus Peter (2025-08-06). "Lattice Reduction by Random Sampling and Birthday Methods". Stacs 2003. Lecture Notes in Computer Science. Vol. 2607. Springer, Berlin, Heidelberg. pp. 145–156. CiteSeerX 10.1.1.137.4293. doi:10.1007/3-540-36494-3_14. ISBN 978-3-540-36494-8.
  9. ^ Aono, Yoshinori; Nguyen, Phong Q. (2025-08-06). "Random Sampling Revisited: Lattice Enumeration with Discrete Pruning". Advances in Cryptology – EUROCRYPT 2017 (PDF). Lecture Notes in Computer Science. Vol. 10211. Springer, Cham. pp. 65–102. doi:10.1007/978-3-319-56614-6_3. ISBN 978-3-319-56613-9. S2CID 39082279.
  10. ^ a b Ajtai, Miklós; Kumar, Ravi; Sivakumar, D. (2001). "A sieve algorithm for the shortest lattice vector problem". Proceedings of the thirty-third annual ACM symposium on Theory of computing. Hersonissos, Greece: ACM. pp. 601–610. doi:10.1145/380752.380857. ISBN 1-58113-349-9. S2CID 14982298.
  11. ^ Micciancio, Daniele; Voulgaris, Panagiotis (2010). "Faster Exponential Time Algorithms for the Shortest Vector Problem". Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '10. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. pp. 1468–1480. doi:10.1137/1.9781611973075.119. ISBN 978-0-89871-698-6. S2CID 90084.
  12. ^ Becker, A.; Ducas, L.; Gama, N.; Laarhoven, T. (2025-08-06). "New directions in nearest neighbor searching with applications to lattice sieving". Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics. pp. 10–24. doi:10.1137/1.9781611974331.ch2. ISBN 978-1-61197-433-1.
  13. ^ a b Agrell, E.; Eriksson, T.; Vardy, A.; Zeger, K. (2002). "Closest Point Search in Lattices" (PDF). IEEE Trans. Inf. Theory. 48 (8): 2201–2214. doi:10.1109/TIT.2002.800499.
  14. ^ Micciancio, Daniele; Voulgaris, Panagiotis (2010). "A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations". Proceedings of the forty-second ACM symposium on Theory of computing. STOC '10. New York, NY, USA: ACM. pp. 351–358. CiteSeerX 10.1.1.705.3304. doi:10.1145/1806689.1806739. ISBN 978-1-4503-0050-6. S2CID 2449948.
  15. ^ Aggarwal, Divesh; Dadush, Daniel; Regev, Oded; Stephens-Davidowitz, Noah (2015). "Solving the Shortest Vector Problem in 2 n Time Using Discrete Gaussian Sampling". Proceedings of the forty-seventh annual ACM symposium on Theory of Computing. STOC '15. New York, NY, USA: ACM. pp. 733–742. doi:10.1145/2746539.2746606. ISBN 978-1-4503-3536-2. S2CID 10214330.
  16. ^ Micciancio, Daniele (2025-08-06). "Lattice Cryptography – Shortest Vector Problem".
  17. ^ Schnorr, C. P. (2025-08-06). "A hierarchy of polynomial time lattice basis reduction algorithms". Theoretical Computer Science. 53 (2): 201–224. doi:10.1016/0304-3975(87)90064-8.
  18. ^ Schnorr, C. P.; Euchner, M. (2025-08-06). "Lattice basis reduction: Improved practical algorithms and solving subset sum problems" (PDF). Mathematical Programming. 66 (1–3): 181–199. doi:10.1007/bf01581144. ISSN 0025-5610. S2CID 15386054.
  19. ^ Chen, Yuanmi; Nguyen, Phong Q. (2025-08-06). "BKZ 2.0: Better Lattice Security Estimates". Advances in Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science. Vol. 7073. Springer, Berlin, Heidelberg. pp. 1–20. doi:10.1007/978-3-642-25385-0_1. ISBN 978-3-642-25384-3.
  20. ^ Peikert, Chris (2009). "Public-key cryptosystems from the worst-case shortest vector problem: extended abstract". Proceedings of the 41st annual ACM symposium on Theory of Computing. Bethesda, MD, USA: ACM. pp. 333–342. doi:10.1145/1536414.1536461. ISBN 978-1-60558-506-2. S2CID 1864880.
  21. ^ Micciancio, Daniele; Goldwasser, Shafi (2002). Complexity of Lattice Problems. Springer.
  22. ^ Goldreich, O.; et al. (1999). "Approximating shortest lattice vectors is not harder than approximating closest lattice vectors". Inf. Process. Lett. 71 (2): 55–61. doi:10.1016/S0020-0190(99)00083-6.
  23. ^ Arora, Sanjeev; et al. (1993). "Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science". J. Comput. Syst. Sci. Vol. 54. pp. 317–331. doi:10.1109/SFCS.1993.366815. ISBN 978-0-8186-4370-5. S2CID 44988406.
  24. ^ Dinur, I.; et al. (2003). "Approximating CVP to Within Almost-Polynomial Factors is NP-Hard". Combinatorica. 23 (2): 205–243. doi:10.1007/s00493-003-0019-y. S2CID 45754954.
  25. ^ Biglieri, E.; Calderbank, R.; Constantinides, Anthony G.; Goldsmith, A.; Paulraj, A.; Poor, H. V. (2007). MIMO Wireless Communications. Cambridge: Cambridge U. P.
  26. ^ Wang, Ping; Le-Ngoc, Tho (2011). "A List Sphere Decoding Algorithm with Improved Radius Setting Strategies". Wireless Personal Communications. 61 (1): 189–200. doi:10.1007/s11277-010-0018-4. S2CID 30919872.
  27. ^ Hassibi, A.; Boyd, S. (1998). "Integer Parameter Estimation in Linear Models with Applications to GPS". IEEE Trans. Sig. Proc. 46 (11): 2938–2952. Bibcode:1998ITSP...46.2938H. CiteSeerX 10.1.1.114.7246. doi:10.1109/78.726808.
  28. ^ Schnorr, C. P. "Factoring integers and computing discrete logarithms via diophantine approximation". Advances in Cryptology – Proceedings of Eurocrypt '91.
  29. ^ Banaszczyk, W. (1993). "New bounds in some transference theorems in the geometry of numbers". Math. Ann. 296 (1): 625–635. doi:10.1007/BF01445125. S2CID 13921988.
  30. ^ Goldreich, Oded; Goldwasser, Shafi (1998). "On the limits of non-approximability of lattice problems". Proceedings of the thirtieth annual ACM symposium on Theory of computing. Dallas, Texas, United States: ACM. pp. 1–9. doi:10.1145/276698.276704. ISBN 0-89791-962-9. S2CID 3051993.
  31. ^ Aharonov, Dorit; Oded Regev (2005). "Lattice problems in NP coNP". J. ACM. 52 (5): 749–765. CiteSeerX 10.1.1.205.3730. doi:10.1145/1089023.1089025. S2CID 1669286.
  32. ^ Dinur, I.; Kindler, G.; Safra, S. (1998). "Approximating-CVP to within Almost-Polynomial Factors is NP-Hard". Proceedings of the 39th Annual Symposium on Foundations of Computer Science. IEEE Computer Society. p. 99. ISBN 978-0-8186-9172-0.
  33. ^ Lenstra, A. K.; Lenstra, H. W. Jr.; Lovász, L. (1982). "Factoring polynomials with rational coefficients" (PDF). Math. Ann. 261 (4): 515–534. doi:10.1007/BF01457454. S2CID 5701340. Archived from the original (PDF) on 2025-08-06.
  34. ^ Ajtai, Miklós; Dwork, Cynthia (1997). "A public-key cryptosystem with worst-case/average-case equivalence". Proceedings of the Twenty-Ninth annual ACM symposium on Theory of computing. El Paso, Texas, United States: ACM. pp. 284–293. doi:10.1145/258533.258604. ISBN 0-89791-888-6. S2CID 9918417.
  35. ^ Cai, Jin-Yi (2000). "The Complexity of Some Lattice Problems". Algorithmic Number Theory. Lecture Notes in Computer Science. Vol. 1838. pp. 1–32. doi:10.1007/10722028_1. ISBN 978-3-540-67695-9.

Further reading

[edit]
梦见死人是什么征兆 手抖是什么情况 眼压高什么症状 门第什么意思 什么地问填词语
为什么来我家 貌不惊人什么意思 alpaca是什么意思 虫草是什么 精力是什么意思
早上11点是什么时辰 麻烦是什么意思 梦见吃粉条是什么预兆 莜面是什么面 画什么点睛
心神不定是什么生肖 手腕疼是什么原因 什么情 舌头麻是什么病的前兆 脸水肿是什么原因
胃酸多吃什么药hcv7jop6ns0r.cn 病毒性肠胃炎吃什么药hcv8jop8ns1r.cn 子宫内膜为什么会增厚sanhestory.com s925是什么hcv9jop5ns0r.cn 低压偏高是什么原因hcv8jop6ns6r.cn
大便发绿色是什么原因hcv8jop3ns5r.cn 什么的嫩芽naasee.com 棉是什么面料hcv8jop2ns5r.cn 小孩耳鸣是什么原因引起的hcv8jop1ns5r.cn 建设性意见是什么意思hcv9jop0ns3r.cn
月季花是什么颜色hcv9jop3ns9r.cn 肾阴虚什么症状hcv7jop5ns5r.cn 什么魏什么赵creativexi.com 心脏病吃什么食物好hcv8jop1ns4r.cn 礼金是什么意思zsyouku.com
宝珀手表属于什么档次hcv7jop7ns3r.cn 骁字五行属什么jinxinzhichuang.com 什么是商业保险hcv9jop6ns5r.cn 千里马比喻什么人hcv8jop2ns6r.cn 有口无心是什么意思hcv8jop9ns3r.cn
百度