吗丁啉是什么药| 人人有的是什么生肖| 尿酸高什么原因| 师团长是什么级别| 两色富足间是什么生肖| 淋巴结挂什么科| 925是什么意思| 腰疼肚子疼是什么原因引起的| teal是什么颜色| 黄芪和什么泡水壮阳| 耍大牌是什么意思| 八一是什么节| EE什么意思| 尿碱是什么| 孙悟空姓什么| 逝去是什么意思| 眼睛疼用什么药| 7月初二是什么星座| 墨西哥说什么语言| 客套是什么意思| ipada1474是什么型号| 月德是什么意思| us是什么意思| 湛蓝湛蓝的什么| 男人梦见猫是什么意思| theme什么意思| 挚爱和至爱有什么区别| 犟是什么意思| 颢字五行属什么| 脂肪疝是什么病| 吃凉的胃疼吃什么药| 小虾吃什么| 梦见丢了一只鞋是什么意思| 冷面是什么做的| 肩胛骨缝疼挂什么科| 什么沐浴露好用| 老鹰茶是什么茶| 蛋花样大便是什么原因| 男宝胶囊为什么不建议吃| 怜悯之心是什么意思| 人类祖先是什么动物| 肠易激综合征吃什么药好| 梦见小鬼是什么预兆| 吃牛肉有什么好处| 公务员做什么工作| 22点是什么时辰| 66.66红包代表什么意思| 知了为什么会叫| 恶性贫血是什么意思| 格局什么意思| 八八年属什么| 结婚六十年是什么婚| 小什么名字好听| 高胆固醇吃什么药| 77年的蛇是什么命| 丝状疣挂什么科| 痰有腥臭味是什么原因| 股票套牢是什么意思| 台风为什么叫台风| 咖啡对心脏有什么影响| 孩子流黄鼻涕吃什么药效果好| 必迈跑鞋什么档次| 女人银屑病一般都长什么地方| ys是什么意思| 北面是什么档次的牌子| 修复胃粘膜吃什么药| 从商是什么意思| 头晕目眩是什么病的征兆| 眼底检查主要查什么| 蝉代表什么生肖| 学前班是什么意思| 手指甲有月牙代表什么| 后背酸痛是什么原因| 痛风打什么针见效最快| 河南人喜欢吃什么菜| 喝石斛水有什么禁忌| 眼睛突然出血是什么原因导致| 喆字五行属什么| 山药和什么不能一起吃| 月经咖啡色是什么原因| 11月份是什么季节| dr是什么检查项目| 茹字五行属什么| 白细胞高是什么原因造成的| 懒惰是什么意思| 经常拉肚子吃什么药好| 失眠多梦吃什么药| spa按摩是什么意思| 反应迟钝是什么原因造成的| 单核细胞高是什么原因| 房客是什么意思| lg手机是什么牌子| 朱门是什么意思| 粉底和气垫的区别是什么| 玻璃是什么做的| 什么样的生活| 胃肠感冒吃什么药| 膝关节退行性变是什么意思| 空调买什么牌子的好| 什么是植物蛋白| 说什么| 梅毒阳性是什么意思| polo衫配什么裤子好看| 绾色是什么颜色| 劫色是什么意思| 如夫人是什么意思| 正三角形是什么| 马克华菲属于什么档次| 胃炎能吃什么| 心口疼是什么原因引起的| 葛根粉有什么功效| 胎盘什么时候形成| 百香果和什么搭配好喝| 视觉感受器是什么| 沉网和浮网有什么区别| 中耳炎用什么药最好| 右手无名指戴戒指什么意思| 郑恺的父母是做什么的| 不可或缺是什么意思| 上热下寒吃什么食物好| 等不到天黑烟火不会太完美什么歌| 被蚂蚁咬了涂什么药| 认命是什么意思| advil是什么药| 房颤与早搏有什么区别| 冷暖自知的前一句是什么| 梦见自己相亲是什么意思| 五月是什么月| 阳痿早泄用什么药| 怀疑心衰做什么检查| 办护照需要什么证件| 略略略是什么意思| 什么是三观不合| 派出所什么时候上班| 喝葡萄汁有什么好处| 双肺纹理增多是什么意思严重吗| 红酒配什么菜| 杜牧字什么号什么| 风寒水饮是什么意思| 黑裤子配什么颜色的鞋| 圆脸适合什么发型女| 黑色素缺失吃什么补充最快| 尬是什么意思| 牙齿突然酸痛什么原因| 尿酸高要注意什么| 猴和什么相冲| 冲猪煞东是什么意思| 11月5号是什么星座| 血红蛋白是查什么的| 春天什么花开| 体型最大的恐龙是什么| 一个虫一个圣念什么| 感染了hpv有什么症状| 什么是双性人| 膝盖后面叫什么部位| 女性尿血是什么原因引起的| 立冬是什么意思| 丙火代表什么| 牛油果是什么味道的| 多肽是什么意思| 一声叹息是什么意思| 阴道炎吃什么药| 溶血症是什么意思| 耳根有痣代表什么| tid是什么意思| 串词是什么| 黑豆加红枣有什么功效| 婴儿腹泻吃什么好| 舒张压和收缩压是什么| 内衣34是什么码| 有什么聚会玩的游戏| 梦见蛇挡路是什么意思| christmas是什么意思| 4月9号是什么星座| spiderman是什么意思| 什么是粗粮食物有哪些| 喝酸梅汤有什么好处| guess是什么意思| 不遗余力的遗是什么意思| 痢疾是什么原因引起的| 强高是什么意思| 失业是什么意思| 心慌气短吃什么药最好| 酸菜鱼是什么地方的菜| 盆腔积液是什么| 三线炎有什么症状| 跌跌撞撞什么意思| 九月十三是什么星座| 糖尿病吃什么水果比较好| 殊胜是什么意思| 胃疼喝什么能缓解疼痛| 血压高是什么原因| 一个点念什么| 亚急性甲状腺炎吃什么药| 2010年是什么命| 白痰多是什么原因| 手指长痣代表什么| 肿瘤前期出现什么症状| 1800年是什么年| vb是什么意思| 宫寒是什么意思| 心脏杂音是什么意思| 石加乏念什么| 神经损伤吃什么药最好| 什么水果蛋白质含量高| 右眼皮跳代表什么| 什么地唱歌| 桑黄有什么药用价值| 犯花痴什么意思| 以什么之名| 等闲变却故人心却道故人心易变什么意思| 小便黄是什么原因引起的| 呆小症是缺乏什么激素| 为什么射出来的精子是黄色的| 桑葚酒有什么功效| 李小龙是什么生肖| CHANDO是什么牌子的化妆品| 高血压高血脂不能吃什么| 胃疼喝什么能缓解疼痛| 停车坐爱枫林晚的坐是什么意思| 青少年流鼻血是什么原因引起的| 碧文圆顶是什么意思| 1990年属马是什么命| 瘘是什么意思| 土豆炒什么好吃| 编程属于什么专业| kb是什么| 什么样的女孩容易招鬼| 武则天属什么生肖| 移动增值业务费是什么| 早孕三项检查什么| 向日葵代表什么生肖| 水痘不能吃什么| 脑梗阻有什么症状| 梦魇是什么原因造成的| 处级干部是什么级别| 三月十九是什么星座| 十五岁是什么年华| 牙疼吃什么水果| 男人皮肤黑穿什么颜色的衣服好看| 2010年是什么命| 人为什么会失眠| 肺气肿是什么病| 嗓子咽口水疼吃什么药| 肝火吃什么药| 胃药吃多了有什么副作用| cbd什么意思| 1997属什么| 带状疱疹挂什么科室| 浮肿是什么原因造成的| 女性多吃什么滋补卵巢| 夜里睡觉手麻是什么原因| 穿山甲到底说了什么| 前列腺回声欠均匀什么意思| 四肢肌力5级什么意思| 淋球菌是什么| 喉咙发炎吃什么| 儿童抗o高会引起什么病| 为什么月经迟迟不来| 肌肤甲错是什么意思| 小孩子腿疼是什么原因| 贫血吃什么最好| 梦见孩子拉屎是什么意思| 女属蛇的和什么属相最配| 百度Jump to content

汪洋氏、中国民主促進会中央委員会を訪問

From Wikipedia, the free encyclopedia
百度 这样的培训全国人大开了个头,起一个示范作用。

Discrete logarithm modulo 5, with base 2.

In mathematics, for given real numbers and , the logarithm is a number such that . The discrete logarithm generalizes this concept to a cyclic group. A simple example is the group of integers modulo a prime number (such as 5) under modular multiplication of nonzero elements.

For instance, take in the multiplicative group modulo 5, whose elements are . Then: The powers of 2 modulo 5 cycle through all nonzero elements, so discrete logarithms exist and are given by:

More generally, in any group , powers can be defined for all integers , and the discrete logarithm is an integer such that . In arithmetic modulo an integer , the more commonly used term is index: One can write (read "the index of to the base modulo ") for if is a primitive root of and .

Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem. Several important algorithms in public-key cryptography, such as ElGamal, base their security on the hardness assumption that the discrete logarithm problem (DLP) over carefully chosen groups has no efficient solution.[1]

Definition

[edit]

Let be any group. Denote its group operation by multiplication and its identity element by . Let be any element of . For any positive integer , the expression denotes the product of with itself times:[2]

Similarly, let denote the product of with itself times. For , the th power is the identity: .

Let also be an element of . An integer that solves the equation is termed a discrete logarithm (or simply logarithm, in this context) of to the base . One writes .

Examples

[edit]

Powers of 10

[edit]

The powers of 10 are

For any number in this list, one can compute . For example, , and . These are instances of the discrete logarithm problem.

Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation means that . While integer exponents can be defined in any group using products and inverses, arbitrary real exponents, such as this 1.724276…, require other concepts such as the exponential function.

In group-theoretic terms, the powers of 10 form a cyclic group under multiplication, and 10 is a generator for this group. The discrete logarithm is defined for any in .

Powers of a fixed real number

[edit]

A similar example holds for any non-zero real number . The powers form a multiplicative subgroup of the non-zero real numbers. For any element of , one can compute .

Modular arithmetic

[edit]

One of the simplest settings for discrete logarithms is the group Zp×. This is the group of multiplication modulo the prime . Its elements are non-zero congruence classes modulo , and the group product of two elements may be obtained by ordinary integer multiplication of the elements followed by reduction modulo .

The th power of one of the numbers in this group may be computed by finding its 'th power as an integer and then finding the remainder after division by . When the numbers involved are large, it is more efficient to reduce modulo multiple times during the computation. Regardless of the specific algorithm used, this operation is called modular exponentiation. For example, consider Z17×. To compute in this group, compute , and then divide by , obtaining a remainder of . Thus in the group Z17×.

The discrete logarithm is just the inverse operation. For example, consider the equation . From the example above, one solution is , but it is not the only solution. Since —as follows from Fermat's little theorem— it also follows that if is an integer then . Hence the equation has infinitely many solutions of the form . Moreover, because is the smallest positive integer satisfying , these are the only solutions. Equivalently, the set of all possible solutions can be expressed by the constraint that .

Powers of the identity

[edit]

In the special case where is the identity element of the group , the discrete logarithm is undefined for other than , and every integer is a discrete logarithm for .

Properties

[edit]

Powers obey the usual algebraic identity .[2] In other words, the function

defined by is a group homomorphism from the group of integers under addition onto the subgroup of generated by . For all in , exists. Conversely, does not exist for that are not in .

If is infinite, then is also unique, and the discrete logarithm amounts to a group isomorphism

On the other hand, if is finite of order , then is 0 unique only up to congruence modulo , and the discrete logarithm amounts to a group isomorphism

where denotes the additive group of integers modulo .

The familiar base change formula for ordinary logarithms remains valid: If is another generator of , then

Algorithms

[edit]
Unsolved problem in computer science
Can the discrete logarithm be computed in polynomial time on a classical computer?

The discrete logarithm problem is considered to be computationally intractable. For a classical (e.g., non-quantum) computer, no efficient (polynomial-time) algorithm is yet known for computing discrete logarithms in general.

A general algorithm for computing in finite groups is to raise to larger and larger powers until the desired is found. This algorithm is sometimes called trial multiplication. It requires running time linear in the size of the group and thus exponential in the number of digits in the size of the group. Therefore, it is an exponential-time algorithm, practical only for small groups .

More sophisticated algorithms exist, usually inspired by similar algorithms for integer factorization. These algorithms run faster than the na?ve algorithm, some of them proportional to the square root of the size of the group, and thus exponential in half the number of digits in the size of the group. However, none of them runs in polynomial time (in the number of digits in the size of the group).

There is an efficient quantum algorithm due to Peter Shor.[3]

Efficient classical algorithms also exist in certain special cases. For example, in the group of the integers modulo under addition, the power becomes a product , and equality means congruence modulo in the integers. The extended Euclidean algorithm finds quickly.

With Diffie–Hellman, a cyclic group modulo a prime is used, allowing an efficient computation of the discrete logarithm with Pohlig–Hellman if the order of the group (being ) is sufficiently smooth, i.e. has no large prime factors.

Comparison with integer factorization

[edit]

While computing discrete logarithms and integer factorization are distinct problems, they share some properties:

  • both are special cases of the hidden subgroup problem for finite abelian groups,
  • both problems seem to be difficult (no efficient algorithms are known for non-quantum computers),
  • for both problems efficient algorithms on quantum computers are known,
  • algorithms from one problem are often adapted to the other, and
  • the difficulty of both problems has been used to construct various cryptographic systems.

Cryptography

[edit]

There exist groups for which computing discrete logarithms is apparently difficult. In some cases (e.g. large prime order subgroups of groups ) there is not only no efficient algorithm known for the worst case, but the average-case complexity can be shown to be about as hard as the worst case using random self-reducibility.[4]

At the same time, the inverse problem of discrete exponentiation is not difficult (it can be computed efficiently using exponentiation by squaring, for example). This asymmetry is analogous to the one between integer factorization and integer multiplication. Both asymmetries (and other possibly one-way functions) have been exploited in the construction of cryptographic systems.

Popular choices for the group in discrete logarithm cryptography (DLC) are the cyclic groups (e.g. ElGamal encryption, Diffie–Hellman key exchange, and the Digital Signature Algorithm) and cyclic subgroups of elliptic curves over finite fields (see Elliptic curve cryptography).

While there is no publicly known algorithm for solving the discrete logarithm problem in general, the first three steps of the number field sieve algorithm only depend on the group , not on the specific elements of whose finite is desired. By precomputing these three steps for a specific group, one need only carry out the last step, which is much less computationally expensive than the first three, to obtain a specific logarithm in that group.[5]

It turns out that much internet traffic uses one of a handful of groups that are of order 1024 bits or less, e.g. cyclic groups with order of the Oakley primes specified in RFC 2409.[6] The Logjam attack used this vulnerability to compromise a variety of internet services that allowed the use of groups whose order was a 512-bit prime number, so called export grade.[5]

The authors of the Logjam attack estimate that the much more difficult precomputation needed to solve the discrete log problem for a 1024-bit prime would be within the budget of a large national intelligence agency such as the U.S. National Security Agency (NSA). The Logjam authors speculate that precomputation against widely reused 1024 DH primes is behind claims in leaked NSA documents that NSA is able to break much of current cryptography.[5]

See also

[edit]

References

[edit]
  1. ^ Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. (1996). "Public-Key Encryption" (PDF). Handbook of Applied Cryptography (1 ed.). CRC Press. p. 294. doi:10.1201/9780429466335. ISBN 978-0-429-46633-5.
  2. ^ a b Lam, Kwok-Yan; Shparlinski, Igor; Wang, Huaxiong; Xing, Chaoping, eds. (2001). Cryptography and Computational Number Theory. Basel: Birkh?user Basel. pp. 54–56. doi:10.1007/978-3-0348-8295-8. eISSN 2297-0584. ISBN 978-3-0348-9507-1. ISSN 2297-0576.
  3. ^ Shor, Peter (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". SIAM Journal on Computing. 26 (5): 1484–1509. arXiv:quant-ph/9508027. doi:10.1137/s0097539795293172. MR 1471990. S2CID 2337707.
  4. ^ Blake, Ian F.; Garefalakis, Theo (2025-08-05). "On the complexity of the discrete logarithm and Diffie–Hellman problems". Journal of Complexity. Festschrift for Harald Niederreiter, Special Issue on Coding and Cryptography. 20 (2): 148–170. doi:10.1016/j.jco.2004.01.002. ISSN 0885-064X.
  5. ^ a b c Adrian, David; Bhargavan, Karthikeyan; Durumeric, Zakir; Gaudry, Pierrick; Green, Matthew; Halderman, J. Alex; Heninger, Nadia; Springall, Drew; Thomé, Emmanuel; Valenta, Luke; VanderSloot, Benjamin; Wustrow, Eric; Zanella-Béguelin, Santiago; Zimmermann, Paul (2025-08-05). "Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice". Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM. pp. 5–17. doi:10.1145/2810103.2813707. ISBN 978-1-4503-3832-5.
  6. ^ Harkins, D.; Carrel, D. (November 1998). The Internet Key Exchange (IKE) (Report). RFC Editor. doi:10.17487/rfc2409.
  • Rosen, Kenneth H. (2011). Elementary Number Theory and Its Application (6 ed.). Pearson. p. 368. ISBN 978-0321500311.
  • Weisstein, Eric W. "Discrete Logarithm". MathWorld. Wolfram Web. Retrieved 2025-08-05.

Further reading

[edit]
怀才不遇是什么意思 乳癖是什么病 文化是指什么 上火是什么症状 眼睛里有红血丝是什么原因
鼠配什么生肖最好 什么时候建档 4月11号是什么星座 举重若轻什么意思 开大是什么意思
饿死是什么感觉 空调除湿是什么标志 养神经吃什么食物最好 破釜沉舟什么意思 魔性是什么意思
抬头头晕是什么原因 4月23是什么星座 先心病是什么病 大便颗粒状是什么原因造成的 尬是什么意思
挽留是什么意思hcv7jop9ns4r.cn 贫血吃什么可以补血dajiketang.com 24是什么生肖hcv8jop4ns8r.cn 片仔癀有什么功效96micro.com 姓杨的女孩子取什么名字fenrenren.com
牙齿根管治疗是什么意思hcv8jop2ns3r.cn 市委副秘书长什么级别hcv9jop5ns8r.cn 一吃东西就牙疼是什么原因引起的hcv7jop6ns5r.cn 梨什么时候成熟hcv8jop9ns0r.cn 心肌缺血吃什么药hcv7jop9ns9r.cn
来忘掉错对来怀念过去是什么歌hcv9jop3ns5r.cn 鸡痘用什么药效果好hcv9jop0ns4r.cn 什么牌助听器好hcv7jop9ns5r.cn 可什么意思creativexi.com 干贝是什么东西hcv9jop3ns9r.cn
糖尿病早餐吃什么好hcv8jop6ns2r.cn 孕妇吃榴莲对胎儿有什么好处hcv8jop7ns3r.cn 教师节送老师什么好zhongyiyatai.com 尿检红细胞高是什么原因hanqikai.com 经常流鼻血是什么原因引起的hcv8jop5ns3r.cn
百度